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CHAPTER
ONE

INSTALLATION

1.1 Prerequisites

e Linux | Windows | macOS
* Python 3.7

* PyTorch 1.6 or higher

* torchvision 0.7.0

» CUDA 10.1

* NCCL2

* GCC 5.4.0 or higher

1.2 Environment Setup

Note: If you are experienced with PyTorch and have already installed it, just skip this part and jump to the next section.
Otherwise, you can follow these steps for the preparation.

Step 0. Download and install Miniconda from the official website.

Step 1. Create a conda environment and activate it.

conda create --name openmmlab python=3.8 -y
conda activate openmmlab

Step 2. Install PyTorch following official instructions, e.g.
On GPU platforms:

conda install pytorch torchvision -c pytorch

On CPU platforms:

conda install pytorch torchvision cpuonly -c pytorch



https://docs.conda.io/en/latest/miniconda.html
https://pytorch.org/get-started/locally/
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1.3 Installation Steps

We recommend that users follow our best practices to install MMOCR. However, the whole process is highly customiz-
able. See Customize Installation section for more information.

1.3.1 Best Practices

Step 0. Install MMCYV using MIM.

pip install -U openmim
mim install mmcv-full

Step 1. Install MMDetection as a dependency.

pip install mmdet

Step 2. Install MMOCR.

Case A: If you wish to run and develop MMOCR directly, install it from source:

git clone https://github.com/open-mmlab/mmocr.git

cd mmocr

pip install -r requirements.txt

pip install -v -e .

# "-v" increases pip's verbosity.

# "-e" means installing the project in editable mode,

# That is, any local modifications on the code will take effect immediately.

Case B: If you use MMOCR as a dependency or third-party package, install it with pip:

pip install mmocr

Step 3. (Optional) If you wish to use any transform involving albumentations (For example, Albu in ABINet’s
pipeline), install the dependency using the following command:

# If MMOCR is installed from source

pip install -r requirements/albu.txt

# If MMOCR is installed via pip

pip install albumentations>=1.1.0 --no-binary qudida,albumentations

Note: We recommend checking the environment after installing albumentations to ensure that opencv-python
and opencv-python-headless are not installed together, otherwise it might cause unexpected issues. If that’s un-
fortunately the case, please uninstall opencv-python-headless to make sure MMOCR’s visualization utilities can
work.

Refer to ‘albumentations ’s official documentation for more details.

4 Chapter 1. Installation
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1.3.2 Verify the installation

We provide two options to verify the installation via inference demo, depending on your installation method. You
should be able to see a pop-up image and the inference result upon successful verification.

# Inference result

[{'filename': 'demo_text_det', 'text': ['yther', 'doyt', 'nan', 'heraies', '188790',
—'cadets', 'army', 'ipioneered', 'and', 'icottages', 'land', 'hall', 'sgardens',
- 'established', 'ithis', 'preformer', 'social', 'octavial', 'hill', 'pm', 'ct', 'lof',

— "aborought']}]

Case A - Installed from Source

Run the following in MMOCR’s directory:

python mmocr/utils/ocr.py --det DB_r18 --recog CRNN demo/demo_text_det.jpg --imshow

Case B - Installed as a Package:

Step 1. We need to download configs, checkpoints and an image necessary for the verification.

mim download mmocr --config dbnet_r18_fpnc_1200e_icdar2015 --dest .
mim download mmocr --config crnn_academic_dataset --dest .
wget https://raw.githubusercontent.com/open-mmlab/mmocr/main/demo/demo_text_det. jpg

The downloading will take several seconds or more, depending on your network environment. The directory tree should
look like the following once everything is done:

crnn_academic-a723alc5.pth

crnn_academic_dataset.py
dbnet_r18_fpnc_1200e_icdar2015.py
dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597.pth
demo_text_det. jpg

Step 2. Run the following codes in your Python interpreter:

from mmocr.utils.ocr import MMOCR

ocr = MMOCR(recog="CRNN', recog_ckpt='crnn_academic-a723alc5.pth', recog_config='crnn_
—academic_dataset.py', det='DB_r18', det_ckpt="dbnet_r18_fpnc_sbn_1200e_icdar2015_
—20210329-ba3ab597.pth', det_config="dbnet_r18_fpnc_1200e_icdar2015.py")
ocr.readtext('demo_text_det.jpg', imshow=True)

1.3. Installation Steps 5




MMOCR, Release 0.6.3

1.4 Customize Installation

1.4.1 CUDA versions

When installing PyTorch, you need to specify the version of CUDA. If you are not clear on which to choose, follow our
recommendations:

» For Ampere-based NVIDIA GPUs, such as GeForce 30 series and NVIDIA A100, CUDA 11 is a must.

 For older NVIDIA GPUs, CUDA 11 is backward compatible, but CUDA 10.2 offers better compatibility and is
more lightweight.

Please make sure the GPU driver satisfies the minimum version requirements. See this table for more information.

Note: Installing CUDA runtime libraries is enough if you follow our best practices, because no CUDA code will be
compiled locally. However if you hope to compile MMCYV from source or develop other CUDA operators, you need to
install the complete CUDA toolkit from NVIDIA’s website, and its version should match the CUDA version of PyTorch.
i.e., the specified version of cudatoolkit in conda install command.

1.4.2 Install MMCV without MIM

MMCYV contains C++ and CUDA extensions, thus depending on PyTorch in a complex way. MIM solves such depen-
dencies automatically and makes the installation easier. However, it is not a must.

To install MMCYV with pip instead of MIM, please follow MMCYV installation guides. This requires manually specifying
a find-url based on PyTorch version and its CUDA version.

For example, the following command install mmcv-full built for PyTorch 1.10.x and CUDA 11.3.

pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cull3/torchl.10/index.
<~ html

1.4.3 Install on CPU-only platforms
MMOCR can be built for CPU-only environment. In CPU mode you can train (requires MMCV version >= 1.4.4), test
or inference a model.
However, some functionalities are gone in this mode:
* Deformable Convolution
* Modulated Deformable Convolution
* ROI pooling
* SyncBatchNorm

If you try to train/test/inference a model containing above ops, an error will be raised. The following table lists affected
algorithms.

6 Chapter 1. Installation
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1.4.4 Using MMOCR with Docker

We provide a Dockerfile to build an image.

# build an image with PyTorch 1.6, CUDA 10.1
docker build -t mmocr docker/

Run it with

docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmocr/data mmocr

1.5 Dependency on MMCV & MMDetection

MMOCR has different version requirements on MMCV and MMDetection at each release to guarantee the implemen-
tation correctness. Please refer to the table below and ensure the package versions fit the requirement.

1.5. Dependency on MMCV & MMDetection 7
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CHAPTER
TWO

GETTING STARTED

In this guide we will show you some useful commands and familiarize you with MMOCR. We also provide a notebook
that can help you get the most out of MMOCR.

2.1 Installation

Check out our installation guide for full steps.

2.2 Dataset Preparation

MMOCR supports numerous datasets which are classified by the type of their corresponding tasks. You may find their
preparation steps in these sections: Detection Datasets, Recognition Datasets, KIE Datasets and NER Datasets.

2.3 Inference with Pretrained Models

You can perform end-to-end OCR on our demo image with one simple line of command:

python mmocr/utils/ocr.py demo/demo_text_ocr.jpg --print-result --imshow

Its detection result will be printed out and a new window will pop up with result visualization. More demo and full
instructions can be found in Demo.

2.4 Training

2.4.1 Training with Toy Dataset

We provide a toy dataset under tests/data on which you can get a sense of training before the academic dataset is
prepared.

For example, to train a text recognition task with seg method and toy dataset,

python tools/train.py configs/textrecog/seg/seg_r31_lbyl6_fpnocr_toy_dataset.py --work-
—dir seg

To train a text recognition task with sar method and toy dataset,



https://github.com/open-mmlab/mmocr/blob/main/demo/MMOCR_Tutorial.ipynb
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python tools/train.py configs/textrecog/sar/sar_r31_parallel_decoder_toy_dataset.py --
—work-dir sar

2.4.2 Training with Academic Dataset

Once you have prepared required academic dataset following our instruction, the only last thing to check is if the
model’s config points MMOCR to the correct dataset path. Suppose we want to train DBNet on ICDAR 2015, and part
of configs/_base_/det_datasets/icdar2015.py looks like the following:

dataset_type = 'IcdarDataset’

data_root = 'data/icdar2015'

train = dict(
type=dataset_type,
ann_file=f"'{data_root}/instances_training.json',
img_prefix=f'{data_root}/imgs',
pipeline=None)

test = dict(
type=dataset_type,
ann_file=f'{data_root}/instances_test.json',
img_prefix=f'{data_root}/imgs',
pipeline=None)

train_list = [train]

test_list = [test]

You would need to check if data/icdar2015 is right. Then you can start training with the command

python tools/train.py configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py --work-dir..
—dbnet

You can find full training instructions, explanations and useful training configs in Training.

2.5 Testing

Suppose now you have finished the training of DBNet and the latest model has been saved in dbnet/latest.pth.
You can evaluate its performance on the test set using the hmean-iou metric with the following command:

python tools/test.py configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py dbnet/
—latest.pth --eval hmean-iou

Evaluating any pretrained model accessible online is also allowed:

python tools/test.py configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py https://
—download.openmmlab.com/mmocr/textdet/dbnet/dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-
—ba3ab597.pth --eval hmean-iou

More instructions on testing are available in Testing.
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CHAPTER
THREE

DEMO

We provide an easy-to-use API for the demo and application purpose in ocr.py script.

The API can be called through command line (CL) or by calling it from another python script. It exposes all the
models in MMOCR to API as individual modules that can be called and chained together. Tesseract is integrated as a
text detector and/or recognizer in the task pipeline.

3.1 Example 1: Text Detection

Instruction: Perform detection inference on an image with the TextSnake recognition model, export the result in a
json file (default) and save the visualization file.

¢ CL interface:

python mmocr/utils/ocr.py demo/demo_text_det.jpg --output demo/ --det TextSnake --recog.
—None --export demo/

* Python interface:

from mmocr.utils.ocr import MMOCR

# Load models into memory
ocr = MMOCR(det='TextSnake', recog=None)

# Inference
results = ocr.readtext('demo/demo_text_det.jpg', output='demo/', export='demo/")

3.2 Example 2: Text Recognition

Instruction: Perform batched recognition inference on a folder with hundreds of image with the CRNN_TPS recogni-
tion model and save the visualization results in another folder. Batch size is set to 10 to prevent out of memory CUDA
runtime errors.

¢ CL interface:

python mmocr/utils/ocr.py %INPUT_FOLDER_PATH% --det None --recog CRNN_TPS --batch-mode --
—»single-batch-size 10 --output %OUPUT_FOLDER_PATH%

* Python interface:

11
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from mmocr.utils.ocr import MMOCR

# Load models into memory
ocr = MMOCR(det=None, recog='CRNN_TPS")

# Inference
results = ocr.readtext(%¥INPUT_FOLDER_PATH%, output = %OUTPUT_FOLDER_PATH%, batch_
—mode=True, single_batch_size = 10)

3.3 Example 3: Text Detection + Recognition

Instruction: Perform ocr (det + recog) inference on the demo/demo_text_det.jpg image with the PANet_IC15 (default)
detection model and SAR (default) recognition model, print the result in the terminal and show the visualization.

¢ CL interface:

python mmocr/utils/ocr.py demo/demo_text_ocr.jpg --print-result --imshow

Note: When calling the script from the command line, the script assumes configs are saved in the configs/ folder.
User can customize the directory by specifying the value of config_dir.

* Python interface:

from mmocr.utils.ocr import MMOCR

# Load models into memory
ocr = MMOCR(Q)

# Inference
results = ocr.readtext('demo/demo_text_ocr.jpg', print_result=True, imshow=True)

3.4 Example 4: Text Detection + Recognition + Key Information Ex-
traction

Instruction: Perform end-to-end ocr (det + recog) inference first with PS_CTW detection model and SAR recognition
model, then run KIE inference with SDMGR model on the ocr result and show the visualization.

¢ CL interface:

python mmocr/utils/ocr.py demo/demo_kie.jpeg --det PS_CTW --recog SAR --kie SDMGR --
—print-result --imshow

Note: Note: When calling the script from the command line, the script assumes configs are saved in the configs/
folder. User can customize the directory by specifying the value of config_dir.

* Python interface:
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from mmocr.utils.ocr import MMOCR

# Load models into memory
ocr = MMOCR(det='PS_CTW', recog='SAR', kie='SDMGR')

# Inference
results = ocr.readtext('demo/demo_kie.jpeg', print_result=True, imshow=True)

3.5 API Arguments

The API has an extensive list of arguments that you can use. The following tables are for the python interface.
MMOCR():

[1]: kie is only effective when both text detection and recognition models are specified.

Note: User can use default pretrained models by specifying det and/or recog, which is equivalent to specifying their
corresponding *_config and *_ckpt. However, manually specifying *_config and *_ckpt will always override
values set by det and/or recog. Similar rules also apply to kie, kie_config and kie_ckpt.

3.5.1 readtext()

[1]: Make sure that the model is compatible with batch mode.
[2]: Only effective when the script is running in det + recog mode.

All arguments are the same for the cli, all you need to do is add 2 hyphens at the beginning of the argument and replace
underscores by hyphens. (Example: det_batch_size becomes --det-batch-size)

For bool type arguments, putting the argument in the command stores it as true. (Example: python
mmocr/utils/ocr.py demo/demo_text_det.jpg --batch_mode --print_result means that batch_mode
and print_result are set to True)

3.6 Models

Text detection:

Text recognition:

Warning: SAR_CN is the only model that supports Chinese character recognition and it requires a Chinese
dictionary. Please download the dictionary from here for a successful run.

Key information extraction:

3.5. API Arguments 13
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3.7 Additional info

* To perform det + recog inference (end2end ocr), both the det and recog arguments must be defined.
* To perform only detection set the recog argument to None.

* To perform only recognition set the det argument to None.

e details argument only works with end2end ocr.

e det_batch_size and recog_batch_size arguments define the number of images you want to forward to the
model at the same time. For maximum speed, set this to the highest number you can. The max batch size is
limited by the model complexity and the GPU VRAM size.

¢ MMOCR calls Tesseract’s API via tesserocr

If you have any suggestions for new features, feel free to open a thread or even PR :)
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CHAPTER
FOUR

TRAINING

4.1 Training on a Single GPU

You can use tools/train.py to train a model on a single machine with a CPU and optionally a GPU.

Here is the full usage of the script:

python tools/train.py ${CONFIG_FILE} [ARGS]

Note: By default, MMOCR prefers GPU to CPU. If you want to train a model on CPU, please empty
CUDA_VISIBLE_DEVICES or set it to -1 to make GPU invisible to the program. Note that CPU training requires
MMCYV >=144.

CUDA_VISIBLE_DEVICES= python tools/train.py ${CONFIG_FILE} [ARGS]

4.2 Training on Multiple GPUs

MMOCR implements distributed training with MMDistributedDataParallel. (Please refer to datasets.md to pre-
pare your datasets)

[PORT={PORT}] ./tools/dist_train.sh ${CONFIG_FILE} ${WORK_DIR} ${GPU_NUM} [PY_ARGS]

4.3 Training on Multiple Machines

You can launch a task on multiple machines connected to the same network.

NNODES=${NNODES} NODE_RANK=${NODE_RANK} PORT=${MASTER_PORT} MASTER_ADDR=${MASTER_ADDR} ./
—tools/dist_train.sh ${CONFIG_FILE} ${WORK_DIR} ${GPU_NUM}! [PY_ARGS]

Note: MMOCR relies on torch.distributed package for distributed training. Find more information at PyTorch’s launch
utility.

Say that you want to launch a job on two machines. On the first machine:

15
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NNODES=2 NODE_RANK=0 PORT=${MASTER_PORT} MASTER_ADDR=${MASTER_ADDR} ./tools/dist_train.
—sh ${CONFIG_FILE} ${WORK_DIR} ${GPU_NUM} [PY_ARGS]

On the second machine:

NNODES=2 NODE_RANK=1 PORT=${MASTER_PORT} MASTER_ADDR=${MASTER_ADDR} ./tools/dist_train.
—sh ${CONFIG_FILE} ${WORK_DIR} ${GPU_NUM} [PY_ARGS]

Note: The speed of the network could be the bottleneck of training.

4.4 Training with Slurm

If you run MMOCR on a cluster managed with Slurm, you can use the script slurm_train. sh.

[GPUS=${GPUS}] [GPUS_PER_NODE=${GPUS_PER_NODE}] [CPUS_PER_TASK=${CPUS_PER_TASK}] [SRUN_
—ARGS=${SRUN_ARGS}] ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} §$
< {WORK_DIR} [PY_ARGS]

Here is an example of using 8 GPUs to train a text detection model on the dev partition.

./tools/slurm_train.sh dev psenet-icl5 configs/textdet/psenet/psenet_r50_fpnf sbn_1x_
—icdar2015.py /nfs/xxxx/psenet-icl5

4.4.1 Running Multiple Training Jobs on a Single Machine

If you are launching multiple training jobs on a single machine with Slurm, you may need to modify the port in configs
to avoid communication conflicts.

For example, in configl.py,

dist_params = dict(backend='nccl', port=29500)

In config2.py,

dist_params = dict(backend='nccl', port=29501)

Then you can launch two jobs with configl.py ang config2.py.

CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME}._
—configl.py ${WORK_DIR}

CUDA_VISIBLE DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME}.
—config2.py ${WORK_DIR}
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4.5 Commonly Used Training Configs

Here we list some configs that are frequently used during training for quick reference.

total_epochs = 1200
data = dict(
# Note: User can configure general settings of train, val and test dataloader by.
—»specifying them here. However, their values can be overridden in dataloader's config.
samples_per_gpu=8, # Batch size per GPU
workers_per_gpu=4, # Number of workers to process data for each GPU
train_dataloader=dict(samples_per_gpu=10, drop_last=True), # Batch size = 10,.
—workers_per_gpu = 4
val_dataloader=dict(samples_per_gpu=6, workers_per_gpu=1), # Batch size = 6,.
—workers_per_gpu = 1
test_dataloader=dict(workers_per_gpu=16), # Batch size = 8, workers_per_gpu = 16

)
# Evaluation
evaluation = dict(interval=1, by_epoch=True) # Evaluate the model every epoch
# Saving and Logging
checkpoint_config = dict(interval=1) # Save a checkpoint every epoch
log_config = dict(

interval=5, # Print out the model's performance every 5 iterations

hooks=[

dict(type='TextLoggerHook")

D
# Optimizer
optimizer = dict(type='SGD', 1lr=0.02, momentum=0.9, weight_decay=0.0001) # Supports all.,
—optimizers in PyTorch and shares the same parameters
optimizer_config = dict(grad_clip=None) # Parameters for the optimizer hook. See https:/
—/github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/optimizer.py for.
—implementation details
# Learning policy
lr_config = dict(policy='poly', power=0.9, min_lr=1e-7, by_epoch=True)

4.5. Commonly Used Training Configs 17
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CHAPTER
FIVE

TESTING

We introduce the way to test pretrained models on datasets here.

5.1 Testing on a Single GPU

You can use tools/test.py to perform single CPU/GPU inference. For example, to evaluate DBNet on IC15: (You
can download pretrained models from Model Zoo):

./tools/dist_test.sh configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py dbnet_rl8_
- fpnc_sbn_1200e_icdar2015_20210329-ba3ab597.pth --eval hmean-iou

And here is the full usage of the script:

python tools/test.py ${CONFIG_FILE CHECKPOINT_FILE} [ARGS]

Note: By default, MMOCR prefers GPU(s) to CPU. If you want to test a model on CPU, please empty
CUDA_VISIBLE_DEVICES or set it to -1 to make GPU(s) invisible to the program. Note that running CPU tests re-
quires MMCYV >=1.44.

CUDA_VISIBLE_DEVICES= python tools/test.py CONFIG_FILE CHECKPOINT_FILE} [ARGS]

5.2 Testing on Multiple GPUs

MMOCR implements distributed testing with MMDistributedDataParallel.

You can use the following command to test a dataset with multiple GPUs.

[PORT={PORT}] ./tools/dist_test.sh ${CONFIG_FILE CHECKPOINT_FILE GPU_NUM} [PY_ARGS]

For example,

./tools/dist_test.sh configs/example_config.py work_dirs/example_exp/example_model_
—,20200202.pth 1 --eval hmean-iou
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5.3 Testing on Multiple Machines

You can launch a task on multiple machines connected to the same network.

NNODES=${NNODES} NODE_RANK=${NODE_RANK} PORT=${MASTER_PORT} MASTER_ADDR=${MASTER_ADDR} ./
—tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [PY_ARGS]

Note: MMOCR relies on torch.distributed package for distributed testing. Find more information at PyTorch’s launch
utility.

Say that you want to launch a job on two machines. On the first machine:

NNODES=2 NODE_RANK=0 PORT=${MASTER_PORT} MASTER_ADDR=${MASTER_ADDR} ./tools/dist_test.sh
—${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [PY_ARGS]

On the second machine:

NNODES=2 NODE_RANK=1 PORT=${MASTER_PORT} MASTER_ADDR=${MASTER_ADDR} ./tools/dist_test.sh
—${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [PY_ARGS]

Note: The speed of the network could be the bottleneck of testing.

5.4 Testing with Slurm

If you run MMOCR on a cluster managed with Slurm, you can use the script tools/slurm_test. sh.

[GPUS=${GPUS}] [GPUS_PER_NODE=${GPUS_PER_NODE}] [SRUN_ARGS=${SRUN_ARGS}] ./tools/slurm_
—test.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${CHECKPOINT_FILE} [PY_ARGS]

Here is an example of using 8 GPUs to test an example model on the ‘dev’ partition with job name ‘test_job’.

GPUS=8 ./tools/slurm_test.sh dev test_job configs/example_config.py work_dirs/example_
—.exp/example_model_20200202.pth --eval hmean-iou

5.5 Batch Testing

By default, MMOCR tests the model image by image. For faster inference, you may change data.val_dataloader.
samples_per_gpu and data.test_dataloader.samples_per_gpu in the config. For example,

data = dict(

val_dataloader=dict(samples_per_gpu=16),
test_dataloader=dict(samples_per_gpu=16),
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will test the model with 16 images in a batch.

Warning: Batch testing may incur performance decrease of the model due to the different behavior of the data
preprocessing pipeline.
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CHAPTER
SIX

DEPLOYMENT

We provide deployment tools under tools/deployment directory.

6.1 Convert to ONNX (experimental)

We provide a script to convert the model to ONNX format. The converted model could be visualized by tools like
Netron. Besides, we also support comparing the output results between PyTorch and ONNX model.

python tools/deployment/pytorch2onnx.py
MODEL_CONFIG_PATH} \
MODEL_CKPT_PATH} \
MODEL_TYPE} \
IMAGE_PATH} \
--output-file OUTPUT_FILE} \
--device-id DEVICE_ID} \
--opset-version ${OPSET_VERSION} \
--verify \
--verbose \
--show \
--dynamic-export

Description of arguments:

Note: This tool is still experimental. For now, some customized operators are not supported, and we only support a
subset of detection and recognition algorithms.

6.1.1 List of supported models exportable to ONNX

The table below lists the models that are guaranteed to be exportable to ONNX and runnable in ONNX Runtime.

Note:
e All models above are tested with PyTorch==1.8.1 and onnxruntime-gpu == 1.8.1
* If you meet any problem with the listed models above, please create an issue and it would be taken care of soon.

* Because this feature is experimental and may change fast, please always try with the latest mmcv and mmocr.
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6.2 Convert ONNX to TensorRT (experimental)

We also provide a script to convert ONNX model to TensorRT format. Besides, we support comparing the output
results between ONNX and TensorRT model.

python tools/deployment/onnx2tensorrt.py
MODEL_CONFIG_PATH} \
MODEL_TYPE} \
IMAGE_PATH} \
ONNX_FILE} \
--trt-file OUT_TENSORRT} \
--max-shape INT INT INT INT \
--min-shape INT INT INT INT \
--workspace-size INT \
--fpl6 \
--verify \
--show \
--verbose

Description of arguments:

Note: This tool is still experimental. For now, some customized operators are not supported, and we only support a
subset of detection and recognition algorithms.

6.2.1 List of supported models exportable to TensorRT

The table below lists the models that are guaranteed to be exportable to TensorRT engine and runnable in TensorRT.

Note:
e All models above are tested with PyTorch==1.8.1, onnxruntime-gpu==1.8.1 and tensorrt==7.2.1.6
* If you meet any problem with the listed models above, please create an issue and it would be taken care of soon.

* Because this feature is experimental and may change fast, please always try with the latest mmcv and mmocr.

6.3 Evaluate ONNX and TensorRT Models (experimental)

We provide methods to evaluate TensorRT and ONNX models in tools/deployment/deploy_test.py.
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6.3.1 Prerequisite

To evaluate ONNX and TensorRT models, ONNX, ONNXRuntime and TensorRT should be installed first. Install
mmcv-full with ONNXRuntime custom ops and TensorRT plugins follow ONNXRuntime in mmcv and TensorRT
plugin in mmcv.

6.3.2 Usage

python tools/deploy_test.py \
CONFIG_FILE} \
MODEL_PATH} \
MODEL_TYPE} \
BACKEND} \
--eval METRICS} \
--device ${DEVICE

6.3.3 Description of all arguments

6.4 Results and Models

Note:

* TensorRT upsampling operation is a little different from PyTorch. For DBNet and PANet, we suggest replacing
upsampling operations with the nearest mode to operations with bilinear mode. Here for PANet, here and here
for DBNet. As is shown in the above table, networks with tag * mean the upsampling mode is changed.

* Note that changing upsampling mode reduces less performance compared with using the nearest mode. However,
the weights of networks are trained through the nearest mode. To pursue the best performance, using bilinear
mode for both training and TensorRT deployment is recommended.

* All ONNX and TensorRT models are evaluated with dynamic shapes on the datasets, and images are preprocessed
according to the original config file.

 This tool is still experimental, and we only support a subset of detection and recognition algorithms for now.

6.5 C++ Inference example with OpenCV

The example below is tested with Visual Studio 2019 as console application, CPU inference only.
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6.5.1 Prerequisites

1. Project should use OpenCV (tested with version 4.5.4), ONNX Runtime NuGet package (version 1.9.0).

2. Download DBNet_r18 detector and SATRN_small recognizer models from our Model Zoo, and export them with
the following python commands (you may change the paths accordingly):

python3.9 ../mmocr/tools/deployment/pytorch2onnx.py --verify --output-file detector.onnx.,
< ../mmocr/configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py ./dbnet_r18_fpnc_sbn_
—1200e_icdar2015_20210329-ba3ab597.pth --dynamic-export det ./sample_big_image_eg_
—1920x1080.png

python3.9 ../mmocr/tools/deployment/pytorch2onnx.py --opset 14 --verify --output-file.
-.recognizer.onnx ../mmocr/configs/textrecog/satrn/satrn_small.py ./satrn_small_20211009-
—,2cf13355.pth recog ./sample_small_image_eg_200x50.png

Note:

* Be aware, while exported detector.onnx file is relatively small (about 50 Mb), recognizer.onnx is pretty
big (more than 600 Mb).

e DBNet_r18 can use ONNX opset 11, SATRN_small can be exported with opset 14.

Warning: Be sure, that verifications of both models are successful - look through the export messages.

6.5.2 Example

Example usage of exported models with C++ is in the code below (don’t forget to change paths to *.onnx files). It’s
applicable to these two models only, other models have another preprocessing and postprocessing logics.

#include <iostream>

#include <opencv2/core/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencvZ2/imgproc.hpp>
#include <opencvZ2/dnn.hpp>

#include <onnxruntime_cxx_api.h>
#pragma comment(lib, "onnxruntime.lib")

// DB_rl8
class Detector {
public:
Detector(const std::string& model_path) {
session = Ort::Session{ env, std::wstring(model_path.begin(), model_path.
—~end()).c_str(), Ort::SessionOptions{nullptr} };
}

std: :vector<cv: :Rect> inference(const cv::Mat& original, float threshold = 0.3f)
—{

(continues on next page)
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(continued from previous page)

cv::Size original_size = original.size();

const char* input_names[] = { "input" };
const char® output_names[] = { "output" };

std::array<int64_t, 4> input_shape{ 1, 3, height, width };

cv::Mat image = cv::Mat::zeros(cv::Size(width, height), original.type());
cv::resize(original, image, cv::Size(width, height), 0, 0, cv::INTER_
—AREA) ;

image.convertTo(image, CV_32FC3);

cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
image = (image - cv::Scalar(123.675f, 116.28f, 103.53f)) / cv::Scalar(58.
395f, 57.12f, 57.375f);

cv::Mat blob = cv::dnn::blobFromImage(image) ;

auto memory_info = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator,..
—0rtMemTypeDefault) ;

Ort::Value input_tensor = Ort::Value::CreateTensor<float>(memory_info,..
— (float*)blob.data, blob.total(), input_shape.data(), input_shape.size());

std: :vector<Ort::Value> output_tensor = session.Run(Ort::RunOptions{.
—nullptr }, input_names, &input_tensor, 1, output_names, 1);

int sizes[] = { 1, 3, height, width };
cv::Mat output(4, sizes, CV_32F, output_tensor.front().
—,GetTensorMutableData<float>());

std: :vector<cv::Mat> images;
cv::dnn: :imagesFromBlob(output, images);

std: :vector<cv::Rect> areas = get_detected(images[0], threshold);
std: :vector<cv: :Rect> results;

float x_ratio = original_size.width / (float)width;
float y_ratio = original_size.height / (float)height;

for (int index = 0; index < areas.size(); ++index) {
cv::Rect box = areas[index];

box.x = int(box.x * x_ratio);
box.width = int(box.width * x_ratio);
box.y = int(box.y * y_ratio);
box.height = int(box.height * y_ratio);

results.push_back(box);

}

return results;

(continues on next page)
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(continued from previous page)

private:
Ort::Env env;
Ort::Session session{ nullptr };

const int width = 1312, height = 736;

cv::Rect expand_box(const cv::Rect& original, int addition = 5) {

cv::Rect box(original);

box.x = std::max(0, box.x - addition);

box.y = std::max(®, box.y - addition);

box.width = (box.x + box.width + addition * 2 > width) ? (width - box.x).
< : (box.width + addition * 2);

box.height = (box.y + box.height + addition * 2) > height ? (height -.
~box.y) : (box.height + addition * 2);

return box;

}

std: :vector<cv::Rect> get_detected(const cv::Mat& output, float threshold) {
cv::Mat text_mask = cv::Mat::zeros(height, width, CV_32F);
std: :vector<cv::Mat> maps;
cv::split(output, maps);
cv::Mat proba_map = maps[0];

cv::threshold(proba_map, text_mask, threshold, 1.0f, cv::THRESH_BINARY);
cv::multiply(text_mask, 255, text_mask);
text_mask.convertTo(text_mask, CV_8U);

std: :vector<std: :vector<cv: :Point>> contours;

cv::findContours(text_mask, contours, cv::RETR_EXTERNAL, cv::CHAIN_
--APPROX_SIMPLE) ;

std: :vector<cv: :Rect> boxes;

for (int index = 0; index < contours.size(); ++index) {
cv::Rect box = expand_box(cv::boundingRect(contours[index]));
boxes.push_back(box) ;

}

return boxes;
};

// SATRN_small
class Recognizer {
public:
Recognizer(const std::string& model_path) {
session = Ort::Session{ env, std::wstring(model_path.begin(), model_path.
—end()).c_str(), Ort::SessionOptions{nullptr} };
}

std: :string inference(const cv::Mat& original) {

(continues on next page)
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const char* input_names[] = { "input" };
const char* output_names[] = { "output" };

std::array<int64_t, 4> input_shape{ 1, 3, height, width };

cv::Mat image;

cv::resize(original, image, cv::Size(width, height), 0, 0, cv::INTER_
—AREA) ;

image.convertTo(image, CV_32FC3);

cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
image = (image / 255.0f - cv::Scalar(0.485f, 0.456f, 0.406f)) /.
—cv::Scalar(0.229f, 0.224f, 0.225f);

cv::Mat blob = cv::dnn::blobFromImage(image);

auto memory_info = Ort::MemoryInfo: :CreateCpu(OrtDeviceAllocator,..
—0rtMemTypeDefault);

Ort::Value input_tensor = Ort::Value::CreateTensor<float>(memory_info,..
—(float*)blob.data, blob.total(), input_shape.data(), input_shape.size());

std: :vector<Ort::Value> output_tensor = session.Run(Ort::RunOptions{.
—nullptr }, input_names, &input_tensor, 1, output_names, 1);

int sequence_length = 25;

std: :string dictionary =
-"0123456789abcdefghi jklmnopgrstuvwxyzABCDEFGHI JKLMNOPQRSTUVWXYZ ! \"#$%&"' QO *+,-./1;<=>?
<@NA\I_"~";

int characters = dictionary.length() + 2; // EOS + UNK

std: :vector<int> max_indices;
for (int outer = 0; outer < sequence_length; ++outer) {
int character_index = -1;
float character_value = 0;
for (int inner = 0; inner < characters; ++inner) {
int counter = outer * characters + inner;
float value = output_tensor[0].GetTensorMutableData
—<float>() [counter];
if (value > character_value) {
character_value = value;
character_index = inner;
}
}

max_indices.push_back(character_index);

std: :string recognized;

for (int index = 0; index < max_indices.size(); ++index) {
if (max_indices[index] == dictionary.length()) {
continue; // unk

}

(continues on next page)
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if (max_indices[index] == dictionary.length() + 1) {
break; // eos

}

recognized += dictionary[max_indices[index]];

3

return recognized;

private:
Ort::Env env;
Ort::Session session{ nullptr };

const int height = 32;
const int width = 100;

1

int main(int argc, const char* argv[]) {
if (argc < 2) {
std::cout << "Usage: this_executable.exe c:/path/to/image.png" <<.
—std::endl;
return 0;

}

std: :chrono: :steady_clock: : time_point begin = std::chrono::steady_clock: :now();
std: :cout << "Loading models..." << std::endl;

Detector detector('d:/path/to/detector.onnx");
Recognizer recognizer('d:/path/to/recognizer.onnx");

std: :chrono: :steady_clock: :time_point end = std::chrono::steady_clock: :now();
std: :cout << "Loading models done in " << std::chrono::duration_cast

—<std::chrono: :milliseconds>(end - begin).count() << ms" << std::endl;
cv::Mat image = cv::imread(argv[1], cv::IMREAD_COLOR);

begin = std::chrono::steady_clock: :now();
std: :vector<cv::Rect> detections = detector.inference(image);
for (int index = 0; index < detections.size(); ++index) {
cv::Mat roi = image(detections[index]);
std::string text = recognizer.inference(roi);
cv::rectangle(image, detections[index], cv::Scalar(255, 255, 255), 2);
cv::putText(image, text, cv::Point(detections[index].x,..
—.detections[index].y - 10), cv::FONT_HERSHEY_COMPLEX, 0.4, cv::Scalar(255, 255, 255));
}
end = std::chrono::steady_clock: :now();
std: :cout << "Inference time (with drawing): " << std::chrono::duration_cast
—<std::chrono: :milliseconds>(end - begin).count() << " ms" << std::endl;

cv::imshow("Results", image);
cv::waitKey(0);

(continues on next page)
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return 0;

}

The output should look something like this.

Loading models. ..
Loading models done in 5715 ms
Inference time (with drawing): 3349 ms

B Results

And the sample result should look something like this.
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CHAPTER
SEVEN

MODEL SERVING

MMOCR provides some utilities that facilitate the model serving process. Here is a quick walkthrough of necessary steps
that let the models to serve through an API.

7.1 Install TorchServe

You can follow the steps on the official website to install TorchServe and torch-model-archiver.

7.2 Convert model from MMOCR to TorchServe

We provide a handy tool to convert any .pth model into .mar model for TorchServe.

python tools/deployment/mmocr2torchserve.py ${CONFIG_FILE CHECKPOINT_FILE} \
--output-folder ${MODEL_STORE} \
--model-name ${MODEL_NAME

Note: ${MODEL_STORE} needs to be an absolute path to a folder.

For example:

python tools/deployment/mmocr2torchserve.py \
configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py \
checkpoints/dbnet_r18_fpnc_1200e_icdar2015.pth \
--output-folder ./checkpoints \
--model-name dbnet

7.3 Start Serving

7.3.1 From your Local Machine

Getting your models prepared, the next step is to start the service with a one-line command:
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# To load all the models in ./checkpoints

torchserve --start --model-store ./checkpoints --models all

# Or, if you only want one model to serve, say dbnet

torchserve --start --model-store ./checkpoints --models dbnet=dbnet.mar

Then you can access inference, management and metrics services through TorchServe’s REST API. You can find their
usages in TorchServe REST APIL.

Note: By default, TorchServe binds port number 8080, 8081 and 8082 toits services. You can change such behavior by
modifying and saving the contents below to config.properties, and running TorchServe with option --ts-config
config.properties.

inference_address=http://0.0.0.0:8080
management_address=http://0.0.0.0:8081
metrics_address=http://0.0.0.0:8082
number_of_netty_threads=32
job_queue_size=1000
model_store=/home/model -server/model-store

7.3.2 From Docker

A better alternative to serve your models is through Docker. We provide a Dockerfile that frees you from those tedious
and error-prone environmental setup steps.

Build mmocr-serve Docker image

docker build -t mmocr-serve:latest docker/serve/

Run mmocr-serve with Docker

In order to run Docker in GPU, you need to install nvidia-docker; or you can omit the --gpus argument for a CPU-only
session.

The command below will run mmocr-serve with a gpu, bind the ports of 8080 (inference), 8081 (management)
and 8082 (metrics) from container to 127.0.0. 1, and mount the checkpoint folder ./checkpoints from the host
machine to /home/model-server/model-store of the container. For more information, please check the official
docs for running TorchServe with docker.

docker run --rm \

--cpus 8 \

--gpus device=0 \

-p8080:8080 -p8081:8081 -p8082:8082 \

--mount type=bind,source="realpath ./checkpoints ,target=/home/model-server/model-store \
mmocr-serve:latest

Note: realpath ./checkpoints points to the absolute path of “./checkpoints”, and you can replace it with the
absolute path where you store torchserve models.
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Upon running the docker, you can access inference, management and metrics services through TorchServe’s REST
API. You can find their usages in TorchServe REST API.

7.4 4. Test deployment

Inference API allows user to post an image to a model and returns the prediction result.

curl http://127.0.0.1:8080/predictions/${MODEL_NAME} -T demo/demo_text_det.jpg

For example,

curl http://127.0.0.1:8080/predictions/dbnet -T demo/demo_text_det.jpg

For detection models, you should obtain a json with an object named boundary_result. Each array inside has
float numbers representing x, y coordinates of boundary vertices in clockwise order, and the last float number as the
confidence score.

{
"boundary_result": [
[
221.18990004062653,
226.875,
221.18990004062653,
212.625,
244.05868631601334,
212.625,
244.05868631601334,
226.875,
0.80883354575186

For recognition models, the response should look like:

{
"text": "sier",
"score": 0.5247521847486496

And you can use test_torchserve.py to compare result of TorchServe and PyTorch by visualizing them.

python tools/deployment/test_torchserve.py IMAGE_FILE CONFIG_FILE CHECKPOINT_
—FILE MODEL_NAME
[--inference-addr INFERENCE_ADDR}] [--device DEVICE}]

Example:

python tools/deployment/test_torchserve.py \
demo/demo_text_det.jpg \
configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py \
checkpoints/dbnet_r18_fpnc_1200e_icdar2015.pth \
dbnet
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CHAPTER
EIGHT

LEARN ABOUT CONFIGS

We incorporate modular and inheritance design into our config system, which is convenient to conduct various exper-
iments. If you wish to inspect the config file, you may run python tools/misc/print_config.py /PATH/TO/
CONFIG to see the complete config.

8.1 Modify config through script arguments

When submitting jobs using “tools/train.py” or “tools/test.py”’, you may specify --cfg-options to in-place modify
the config.

» Update config keys of dict chains.

The config options can be specified following the order of the dict keys in the original config. For example,
--cfg-options model.backbone.norm_eval=False changes the all BN modules in model backbones to
train mode.

» Update keys inside a list of configs.

Some config dicts are composed as a list in your config. For example, the training pipeline data.train.
pipeline is normally a list e.g. [dict(type='LoadImageFromFile'), ...]. If you want to change
'LoadImageFromFile' to 'LoadImageFromNdarry' in the pipeline, you may specify --cfg-options
data.train.pipeline.®.type=LoadImageFromNdarry.

» Update values of list/tuples.

If the value to be updated is a list or a tuple. For example, the config file normally sets workflow=[('train',
1)]. If you want to change this key, you may specify --cfg-options workflow="[(train,1),(val,1)]".
Note that the quotation mark ” is necessary to support list/tuple data types, and that NO white space is allowed
inside the quotation marks in the specified value.

8.2 Config Name Style

We follow the below style to name full config files (configs/TASK/*.py). Contributors are advised to follow the
same style.

{model}_[ARCHITECTURE]_[schedule]_{dataset}.py

{xxx} is required field and [yyy] is optional.
* {model}: model type like dbnet, crnn, etc.

* [ARCHITECTURE]: expands some invoked modules following the order of data flow, and the content depends on
the model framework. The following examples show how it is generally expanded.
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— For text detection tasks, key information tasks, and SegOCR in text recognition task:
{model}_[backbone]_[neck]_[schedule]_{dataset}.py

— For other text recognition tasks, {model}_[backbone]_[encoder]_[decoder]_[schedule]_{dataset}.
py Note that backbone, neck, encoder, decoder are the names of modules, e.g. r50, fpnocr, etc.

* {schedule}: training schedule. For instance, 1200e denotes 1200 epochs.

e {dataset}: dataset. It can either be the name of a dataset (icdar2015), or a collection of datasets for brevity
(e.g. academic usually refers to a common practice in academia, which uses MJSynth + SynthText as training
set, and IIIT5K, SVT, IC13, IC15, SVTP and CT80 as test set).

Most configs are composed of basic primitive configs in configs/_base_, where each primitive config in different
subdirectory has a slightly different name style. We present them as follows.

* det_datasets, recog_datasets: {dataset_name(s)}_[train|test].py. If [train|test] is not specified, the con-
fig should contain both training and test set.

There are two exceptions: toy_data.py and seg_toy_data.py. In recog_datasets, the first one works for most while
the second one contains character level annotations and works for seg baseline only as of Dec 2021.

 det_models, recog_models: {model}_[ARCHITECTURE].py.
* det_pipelines, recog_pipelines: {model}_pipeline.py.

¢ schedules: schedule_{optimizer}_{num_epochs}e.py.

8.3 Config Structure

For better config reusability, we break many of reusable sections of configs into configs/_base_. Now the directory
tree of configs/_base_ is organized as follows:

_base_

— det_datasets
— det_models

— det_pipelines
— recog_datasets
— recog_models
— recog_pipelines
L— schedules

These primitive configs are categorized by their roles in a complete config. Most of model configs are making full use
of primitive configs by including them as parts of _base_ section. For example, dbnet_r18_fpnc_1200e_icdar2015.py
takes five primitive configs from _base_:

_base_ = [
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_sgd_1200e.py"',
'../../_base_/det_models/dbnet_r18_fpnc.py',
'../../_base_/det_datasets/icdar2015.py",
'../../_base_/det_pipelines/dbnet_pipeline.py'
]

From these configs’ names we can roughly know this config trains dbnet_r18_fpnc with sgd optimizer in 1200 epochs.
It uses the origin dbnet pipeline and icdar2015 as the dataset. We encourage users to follow and take advantage of this
convention to organize the config clearly and facilitate fair comparison across different primitive configurations as well
as models.
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Please refer to mmcv for detailed documentation.

8.4 Config File Structure

8.4.1 Model

The parameter "model" is a python dictionary in the configuration file, which mainly includes information such as
network structure and loss function.

Note: The ‘type’ in the configuration file is not a constructed parameter, but a class name.

Note: We can also use models from MMDetection by adding mmdet . prefix to type name, or from other OpenMMLab
projects in a similar way if their backbones are registered in registries.

Shared Section

¢ type: Model name.

Text Detection / Text Recognition / Key Information Extraction Model

* backbone: Backbone configs. Common Backbones, TextRecog Backbones
* neck: Neck network name. TextDet Necks, TextRecog Necks.

¢ bbox_head: Head network name. Applicable to text detection, key information models and some text recognition
models. TextDet Heads, TextRecog Heads, KIE Heads.

— loss: Loss function type. TextDet Losses, KIE Losses

— postprocessor: (TextDet only) Postprocess type. TextDet Postprocessors

Text Recognition / Named Entity Extraction Model

* encoder: Encoder configs. TextRecog Encoders
* decoder: Decoder configs. Applicable to text recognition models. TextRecog Decoders
* loss: Loss configs. Applicable to some text recognition models. TextRecog Losses

e label_convertor: Convert outputs between text, index and tensor. Applicable to text recognition models.
Label Convertors

* max_seq_len: The maximum sequence length of recognition results. Applicable to text recognition models.

8.4. Config File Structure 39


https://mmcv.readthedocs.io/en/latest/understand_mmcv/config.html
https://mmocr.readthedocs.io/en/latest/api.html#module-mmocr.models.common.backbones
https://mmocr.readthedocs.io/en/latest/api.html#module-mmocr.models.textrecog.backbones
https://mmocr.readthedocs.io/en/latest/api.html#module-mmocr.models.textdet.necks
https://mmocr.readthedocs.io/en/latest/api.html#module-mmocr.models.textrecog.necks
https://mmocr.readthedocs.io/en/latest/api.html#module-mmocr.models.textdet.dense_heads
https://mmocr.readthedocs.io/en/latest/api.html#module-mmocr.models.textrecog.heads
https://mmocr.readthedocs.io/en/latest/api.html#module-mmocr.models.kie.heads
https://mmocr.readthedocs.io/en/latest/api.html#module-mmocr.models.textdet.losses
https://mmocr.readthedocs.io/en/latest/api.html#module-mmocr.models.kie.losses
https://mmocr.readthedocs.io/en/latest/api.html#module-mmocr.models.textdet.postprocess
https://mmocr.readthedocs.io/en/latest/api.html#module-mmocr.models.textrecog.encoders
https://mmocr.readthedocs.io/en/latest/api.html#module-mmocr.models.textrecog.decoders
https://mmocr.readthedocs.io/en/latest/api.html#module-mmocr.models.textrecog.losses
https://mmocr.readthedocs.io/en/latest/api.html#module-mmocr.models.textrecog.convertors

MMOCR, Release 0.6.3

8.4.2 Data & Pipeline

The parameter "data" is a python dictionary in the configuration file, which mainly includes information to construct
dataloader:

* samples_per_gpu : the BatchSize of each GPU when building the dataloader
* workers_per_gpu : the number of threads per GPU when building dataloader
e train | val | test: config to construct dataset

— type: Dataset name. Check dataset types for supported datasets.

The parameter evaluation is also a dictionary, which is the configuration information of evaluation hook, mainly
including evaluation interval, evaluation index, etc.

# dataset settings

dataset_type = 'IcdarDataset' # dataset name
data_root = 'data/icdar2015' # dataset root
img_norm_cfg = dict( # Image normalization config to normalize the input images

mean=[123.675, 116.28, 103.53], # Mean values used to pre-training the pre-trained.
—»backbone models

std=[58.395, 57.12, 57.375], # Standard variance used to pre-training the pre-
—trained backbone models

to_rgb=True) # Whether to invert the color channel, rgb2bgr or.
—bgr2rgb.

# train data pipeline
train_pipeline = [ # Training pipeline
dict(type='LoadImageFromFile'), # First pipeline to load images from file path
dict(
type="'LoadAnnotations', # Second pipeline to load annotations for current image
with_bbox=True, # Whether to use bounding box, True for detection
with_mask=True, # WWhether to use instance mask, True for instance segmentation
poly2mask=False), # lihether to convert the polygon mask to instance mask, set.
—False for acceleration and to save memory
dict(
type='Resize', # Augmentation pipeline that resize the images and their.
—annotations
img_scale=(1333, 800), # The largest scale of image
keep_ratio=True
), # whether to keep the ratio between height and width.
dict(
type='RandomFlip', # Augmentation pipeline that flip the images and their.
—annotations
flip_ratio=0.5), # The ratio or probability to flip
dict(
type="'Normalize', # Augmentation pipeline that normalize the input images
mean=[123.675, 116.28, 103.53], # These keys are the same of img_norm_cfg since.
—the
std=[58.395, 57.12, 57.375], # keys of img_norm_cfg are used here as arguments
to_rgb=True),
dict(
type='Pad', # Padding config
size_divisor=32), # The number the padded images should be divisible
dict(type='DefaultFormatBundle'), # Default format bundle to gather data in the.
< pipeline

(continues on next page)
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dict(
type='Collect', # Pipeline that decides which keys in the data should be passed.
—to the detector
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
]
test_pipeline = [
dict(type='LoadImageFromFile'), # First pipeline to load images from file path

dict(
type="MultiScaleFlipAug', # An encapsulation that encapsulates the testing.,
—saugmentations

img_scale=(1333, 800), # Decides the largest scale for testing, used for the.
—Resize pipeline
flip=False, # Whether to flip images during testing
transforms=[
dict(type='Resize', # Use resize augmentation
keep_ratio=True), # Whether to keep the ratio between height and width,
— the img_scale set here will be suppressed by the img_scale set above.
dict(type="RandomFlip'), # Thought RandomFlip is added in pipeline, it is.
—not used because flip=False
dict(
type='Normalize', # Normalization config, the values are from img_norm_
—cfg
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(
type='Pad', # Padding config to pad images divisible by 32.
size_divisor=32),
dict(
type='ImageToTensor', # convert image to tensor
keys=["img']),
dict(
type='Collect', # Collect pipeline that collect necessary keys for.
—testing.
keys=["img'])
D
]
data = dict(
samples_per_gpu=32, # Batch size of a single GPU
workers_per_gpu=2, # Worker to pre-fetch data for each single GPU
train=dict( # train data config
type=dataset_type, # dataset name
ann_file=f'{data_root}/instances_training.json', # Path to annotation file
img_prefix=f'{data_root}/imgs', # Path to images
pipeline=train_pipeline), # train data pipeline
test=dict( # test data config
type=dataset_type,
ann_file=f'{data_root}/instances_test.json', # Path to annotation file
img_prefix=f'{data_root}/imgs', # Path to images
pipeline=test_pipeline))
evaluation = dict( # The config to build the evaluation hook, refer to https://
—»github.com/open-mmlab/mmdetection/blob/master/mmdet/core/evaluation/eval_hooks.py#L7._

—for more details. (continues on next page)
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interval=1, # Evaluation interval
metric="hmean-iou') # Metrics used during evaluation

8.4.3 Training Schedule

Mainly include optimizer settings, optimizer hook settings, learning rate schedule and runner settings:
e optimizer: optimizer setting , support all optimizers in pytorch, refer to related mmcv documentation.

e optimizer_config: optimizer hook configuration file, such as setting gradient limit, refer to related mmcv
code.

9% G

e 1r_config: Learning rate scheduler, supports “CosineAnnealing”, “Step”, “Cyclic”, etc. Refer to related mmcv
documentation for more options.

e runner: For runner, please refer to mmcv for runner introduction document.

# The configuration file used to build the optimizer, support all optimizers in PyTorch.

optimizer = dict(type="SGD', # Optimizer type

1Ir=0.1, # Learning rate of optimizers, see detail usages.
—o0f the parameters in the documentation of PyTorch

momentum=0.9, # Momentum

weight_decay=0.0001) # Weight decay of SGD
# Config used to build the optimizer hook, refer to https://github.com/open-mmlab/mmcv/
—blob/master/mmcv/runner/hooks/optimizer.py#L8 for implementation details.
optimizer_config = dict(grad_clip=None) # Most of the methods do not use gradient clip
# Learning rate scheduler config used to register LrUpdater hook
lr_config = dict(policy="'step’, # The policy of scheduler, also support.,
—»CosineAnnealing, Cyclic, etc. Refer to details of supported LrUpdater from https://
—github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py#L9.

step=[30, 60, 90]) # Steps to decay the learning rate
runner = dict(type='EpochBasedRunner', # Type of runner to use (i.e. IterBasedRunner.
—or EpochBasedRunner)
max_epochs=100) # Runner that runs the workflow in total max_epochs..

—For IterBasedRunner use ‘max_iters’

8.4.4 Runtime Setting

This part mainly includes saving the checkpoint strategy, log configuration, training parameters, breakpoint weight
path, working directory, etc..

# Config to set the checkpoint hook, Refer to https://github.com/open-mmlab/mmcv/blob/
—.master/mmcv/runner/hooks/checkpoint.py for implementation.
checkpoint_config = dict(interval=1) # The save interval is 1
# config to register logger hook
log_config = dict( # Config to register logger hook
interval=50, # Interval to print the log
hooks=[
dict(type='TextLoggerHook', by_epoch=False),
dict(type='TensorboardlLoggerHook', by_epoch=False),
dict(type='WandbLoggerHook', by_epoch=False, # The Wandb logger is also.
< supported, It requires ‘wandb' to be installed.

(continues on next page)
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init_kwargs={
'project': "MMOCR", # Project name in WandB
}), # Check https://docs.wandb.ai/ref/python/init for more.
—init arguments.
# ClearMLLoggerHook, DvclivelLoggerHook, M1flowLoggerHook, NeptunelLoggerHook,.
—PaviloggerHook, SegmindLoggerHook are also supported based on MMCV implementation.

D

dist_params = dict(backend="'nccl") # Parameters to setup distributed training, the.
—port can also be set.

log_level = "INFO' # The output level of the log.

resume_from = None # Resume checkpoints from a given path, the training will.
—be resumed from the epoch when the checkpoint's is saved.

workflow = [('train', 1)] # Workflow for runner. [('train', 1)] means there is only.
—~one workflow and the workflow named 'train' is executed once.

work_dir = 'work_dir' # Directory to save the model checkpoints and logs for.

—the current experiments.

8.5 FAQ

8.5.1 Ignore some fields in the base configs

Sometimes, you may set _delete_=True to ignore some of fields in base configs. You may refer to mmcv for simple
illustration.

8.5.2 Use intermediate variables in configs

Some intermediate variables are used in the configs files, like train_pipeline/test_pipeline in datasets. It’s
worth noting that when modifying intermediate variables in the children configs, user need to pass the intermediate
variables into corresponding fields again. For example, we usually want the data path to be a variable so that we

dataset_type = 'IcdarDataset'
data_root = 'data/icdar2015'

train = dict(
type=dataset_type,
ann_file=f'{data_root}/instances_training.json',
img_prefix=f'{data_root}/imgs',
pipeline=None)

test = dict(
type=dataset_type,
ann_file=f'{data_root}/instances_test.json’,
img_prefix=f'{data_root}/imgs',
pipeline=None)
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8.5.3 Use some fields in the base configs
Sometimes, you may refer to some fields in the _base_ config, so as to avoid duplication of definitions. You can refer
to mmcv for some more instructions.

This technique has been widely used in MMOCR’s configs, where the main configs refer to the dataset and pipeline
defined in base configs by:

train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}

train_pipeline = {{_base_.train_pipeline}}
test_pipeline = {{_base_.test_pipeline}}

Which assumes that its base configs export datasets and pipelines in a way like:

# base dataset config
dataset_type = 'IcdarDataset'
data_root = 'data/icdar2015'

train = dict(
type=dataset_type,
ann_file=f'{data_root}/instances_training.json',
img_prefix=f'{data_root}/imgs',
pipeline=None)

test = dict(
type=dataset_type,
ann_file=f'{data_root}/instances_test.json',
img_prefix=f'{data_root}/imgs"',
pipeline=None)

train_list = [train]
test_list = [test]

# base pipeline config
train_pipeline = dict(...)
test_pipeline = dict(...)

8.6 Deprecated train_cfg/test_cfg

The train_cfg and test_cfg are deprecated in config file, please specify them in the model config. The original
config structure is as below.

# deprecated
model = dict(
type=...,

)
train_cfg=dict(...)
test_cfg=dict(...)

The migration example is as below.
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# recommended
model = dict(
type=...,

train_cfg=dict(...),
test_cfg=dict(...),
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CHAPTER
NINE

9.1 Dataset Wrapper

9.1.1 UniformConcatDataset

DATASET TYPES

UniformConcatDataset is a fundamental dataset wrapper in MMOCR which allows users to apply a universal

pipeline on multiple datasets without specifying the pipeline for each of them.

Applying a Pipeline on Multiple Datasets

For example, to apply train_pipeline on both trainl and train2,

data = dict(

train=dict(
type="'UniformConcatDataset',
datasets=[trainl, train2],
pipeline=train_pipeline))

Also, it support applying different pipeline to different datasets,

train_listl = [trainl, train2]
train_list2 = [train3, train4]

data = dict(

train=dict(
type="'UniformConcatDataset',
datasets=[train_listl, train_list2],
pipeline=[train_pipelinel, train_pipeline2]))

Here, train_pipelinel will be applied to trainl and train2, and train_pipeline2 will be applied to train3

and train4.
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Getting Mean Evaluation Scores

Evaluating the model on multiple datasets is a common strategy in academia, and the mean score is therefore a crit-
ical indicator of the model’s overall performance. By default, UniformConcatDataset reports mean scores in the
form of mean_{metric_name} when more than 1 datasets are wrapped. You can customize the behavior by setting
show_mean_scores in data.val and data.test. Choices are 'auto'(default), True and False

data = dict(

val=dict(
type="UniformConcatDataset',
show_mean_scores=True, # always show mean scores
datasets=[train_list],
pipeline=[train_pipeline)

test=dict(
type="'UniformConcatDataset"',
show_mean_scores=False, # do not show mean scores
datasets=[train_list],
pipeline=[train_pipeline))

9.2 Text Detection

9.2.1 IcdarDataset

Dataset with annotation file in coco-like json format

Example Configuration

dataset_type = 'IcdarDataset'
prefix = 'tests/data/toy_dataset/'
test=dict(

type=dataset_type,

ann_file=prefix + 'instances_test.json',
img_prefix=prefix + 'imgs',
pipeline=test_pipeline)

Annotation Format

You can check the content of the annotation file in tests/data/toy_dataset/instances_test. json for an ex-
ample. It’s compatible with any annotation file in COCO format defined in MMDetection:

Note: Icdar 2015/2017 and ctw1500 annotations need to be converted into the COCO format following the steps in

datasets.md.
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Evaluation

IcdarDataset has implemented two evaluation metrics, hmean-iou and hmean-1ic13, to evaluate the performance of
text detection models, where hmean-iou is the most widely used metric which computes precision, recall and F-score
based on IoU between ground truth and prediction.

In particular, filtering predictions with a reasonable score threshold greatly impacts the performance measurement.
MMOCR alleviates such hyperparameter effect by sweeping through the hyperparameter space and returns the best
performance every evaluation time. User can tune the searching scheme by passingmin_score_thr, max_score_thr
and step into the evaluation hook in the config.

For example, with the following configuration, you can evaluate the model’s output on a list of boundary score thresh-
olds [0.1, 0.2, 0.3, 0.4, 0.5] and get the best score from them during training.

evaluation = dict(
interval=100,
metric="hmean-iou’,
min_score_thr=0.1,
max_score_thr=0.5,
step=0.1)

During testing, you can change these parameter values by appending them to --eval-options.

python tools/test.py configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py db_r18.pth -
—-eval hmean-iou --eval-options min_score_thr=0.1 max_score_thr=0.6 step=0.1

Check out our API doc for further explanations on these parameters.

9.2.2 TextDetDataset

Dataset with annotation file in line-json txt format

We have designed new types of dataset consisting of loader , backend, and parser to load and parse different types of
annotation files.

e loader: Load the annotation file. We now have a unified loader, AnnFileLoader, which can use different
backend to load annotation from txt. The original HardDiskLoader and LmdbLoader will be deprecated.

¢ backend: Load annotation from different format and backend.

LmdbAnnFileBackend: Load annotation from Imdb dataset.

HardDiskAnnFileBackend: Load annotation file with raw hard disks storage backend. The annotation
format can be either txt or Imdb.

PetrelAnnFileBackend: Load annotation file with petrel storage backend. The annotation format can
be either txt or Imdb.

HTTPAnnFileBackend: Load annotation file with http storage backend. The annotation format can be
either txt or Imdb.

e parser: Parse the annotation file line-by-line and return with dict format. There are two types of parser,
LineStrParser and LineJsonParser.

— LineStrParser: Parse one line in ann file while treating it as a string and separating it to several parts by
a separator. It can be used on tasks with simple annotation files such as text recognition where each line
of the annotation files contains the filename and label attribute only.
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— LineJsonParser: Parse one line in ann file while treating it as a json-string and using json. loads to con-
vert it to dict. It can be used on tasks with complex annotation files such as text detection where each line
of the annotation files contains multiple attributes (e.g. filename, height, width, box, segmentation,
iscrowd, category_id, etc.).

Example Configuration

dataset_type = 'TextDetDataset'
img_prefix = 'tests/data/toy_dataset/imgs'
test_anno_file = 'tests/data/toy_dataset/instances_test.txt'
test = dict(
type=dataset_type,
img_prefix=img_prefix,
ann_file=test_anno_file,
loader=dict(
type="'AnnFileloader',
repeat=4,
parser=dict(
type='LineJsonParser',
keys=['file_name', 'height', 'width', 'annotations'])),
pipeline=test_pipeline,
test_mode=True)

Annotation Format

The results are generated in the same way as the segmentation-based text recognition task above. You can check
the content of the annotation file in tests/data/toy_dataset/instances_test.txt. The combination of
HardDiskLoader and LineJsonParser will return a dict for each file by calling __getitem__:

{"file_name": "test/img_10.jpg", "height": 720, "width": 1280, "annotations": [{"iscrowd
—": 1, "category_id": 1, "bbox": [260.0, 138.0, 24.0, 20.0], "segmentation": [[261, 138,
< 284, 140, 279, 158, 260, 158]1}, {"iscrowd": ®, "category_id": 1, "bbox": [288.0, 138.
-0, 129.0, 23.0], "segmentation": [[288, 138, 417, 140, 416, 161, 290, 157]]1}, {"iscrowd
~": 0, "category_id": 1, "bbox": [743.0, 145.0, 37.0, 18.0], "segmentation": [[743, 145,
— 779, 146, 780, 163, 746, 163]1}, {"iscrowd": O, "category_id": 1, "bbox": [783.0, 129.
-0, 50.0, 26.0], "segmentation": [[783, 129, 831, 132, 833, 155, 785, 15311}, {"iscrowd
—": 1, "category_id": 1, "bbox": [831.0, 133.0, 43.0, 23.0], "segmentation": [[831, 133,
- 870, 135, 874, 156, 835, 155]1}, {"iscrowd": 1, "category_id": 1, "bbox": [159.0, 204.
-0, 72.0, 15.0], "segmentation": [[159, 205, 230, 204, 231, 218, 159, 219]]1}, {"iscrowd
~": 1, "category_id": 1, "bbox": [785.0, 158.0, 75.0, 21.0], "segmentation": [[785, 158,
- 856, 158, 860, 178, 787, 17911}, {"iscrowd": 1, "category_id": 1, "bbox": [1011.0,.
-157.0, 68.0, 16.0], "segmentation": [[1011, 157, 1079, 160, 1076, 173, 1011, 1701131}
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Evaluation

TextDetDataset shares a similar implementation with IcdarDataset. Please refer to the evaluation section of
‘IcdarDataset’.

9.3 Text Recognition

9.3.1 OCRDataset

Dataset for encoder-decoder based recognizer

It shares a similar architecture with TextDetDataset. Check out the introduction for details.

Example Configuration

dataset_type = 'OCRDataset’
img_prefix = 'tests/data/ocr_toy_dataset/imgs’
train_anno_file = 'tests/data/ocr_toy_dataset/label.txt'
train = dict(
type=dataset_type,
img_prefix=img_prefix,
ann_file=train_anno_file,
loader=dict(
type='AnnFileLoader',
repeat=10,
parser=dict(
type='LineStrParser',

keys=['filename', 'text'],
keys_idx=[0, 1],
separator="' ")),

pipeline=train_pipeline,
test_mode=False)

Optional Arguments:

* repeat: The number of repeated lines in the annotation files. For example, if there are 10 lines in the annotation
file, setting repeat=10 will generate a corresponding annotation file with size 100.

Annotation Format

You can check the content of the annotation file in tests/data/ocr_toy_dataset/label.txt. The combination
of HardDiskLoader and LineStrParser will return a dict for each file by calling __getitem__: {'filename':
'1223731.jpg"', 'text': 'GRAND'}
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Loading LMDB Datasets

We have support for reading annotation files from the full Imdb dataset (with images and annotations). It is now
possible to read Imdb datasets commonly used in academia. We have also implemented a new dataset conversion tool,
recog2lmdb. It converts the recognition dataset to Imdb format. See PR982 for more details.

Here is an example configuration to load Imdb annotations:

Imdb_root = 'path to lmdb folder'
train = dict(
type="0OCRDataset',
img_prefix=1mdb_root,
ann_file=1mdb_root,
loader=dict(
type="AnnFilelLoader"',
repeat=1,
file_format="Imdb",
parser=dict(
type='LineJsonParser',
keys=['filename', 'text']),
pipeline=None,
test_mode=False)

Evaluation

There are six evaluation metrics available for text recognition tasks: word_acc, word_acc_ignore_case,
word_acc_ignore_case_symbol, char_recall, char_precision and one_minus_ned. See our API doc for
explanations on metrics.

By default, OCRDataset generates full reports on all the metrics if its evaluation metric is acc. Here is an example
case for training.

# Configuration
evaluation = dict(interval=1, metric='acc')

# Results
{'0O_char_recall': 0.0484, 'O_char_precision': 0.6, 'O_word_acc': 0.0, '0O_word_acc_ignore_
—case': 0.0, 'O_word_acc_ignore_case_symbol': 0.0, '0_1-N.E.D': 0.0525}

Note: ‘0_ prefixes result from UniformConcatDataset. It’s kept here since MMOCR always wrap
UniformConcatDataset around any datasets.

If you want to conduct the evaluation on a subset of evaluation metrics:

evaluation = dict(interval=1, metric=['word_acc_ignore_case', 'one_minus_ned'])

The result will look like:

{'0®_word_acc_ignore_case': 0.0, '0_1-N.E.D': 0.0525}

During testing, you can specify the metrics to evaluate in the command line:
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python tools/test.py configs/textrecog/crnn/crnn_toy_dataset.py crnn.pth --eval word_acc_
—ignore_case one_minus_ned

9.3.2 OCRSegDataset

Dataset for segmentation-based recognizer

It shares a similar architecture with TextDetDataset. Check out the introduction for details.

Example Configuration

prefix = 'tests/data/ocr_char_ann_toy_dataset/'
train = dict(
type="'0CRSegDataset"',
img_prefix=prefix + 'imgs',
ann_file=prefix + 'instances_train.txt',
loader=dict(
type="AnnFileLoader"',
repeat=10,
parser=dict(
type='LineJsonParser',
keys=['file_name', 'annotations', 'text'])),
pipeline=train_pipeline,
test_mode=True)

Annotation Format

You can check the content of the annotation file in tests/data/ocr_char_ann_toy_dataset/instances_train.

txt. The combination of HardDiskLoader and LineJsonParser will return a dict for each file by calling
__getitem__ each time:

{"file_name": "resort_88_101_1.png", "annotations": [{"char_text": "F", "char_box": [11.
-0, 0.0, 22.0, 0.0, 12.0, 12.0, 0.0, 12.0]}, {"char_text": "r", "char_box": [23.0, 2.0,.
~31.0, 1.0, 24.0, 11.0, 16.0, 11.01}, {"char_text": "o", "char_box": [33.0, 2.0, 43.0,.
2.0, 36.0, 12.0, 25.0, 12.0]}, {"char_text": "m", "char_box": [46.0, 2.0, 61.0, 2.0,.
-53.0, 12.0, 39.0, 12.0]}, {"char_text": ":", "char_box": [61.0, 2.0, 69.0, 2.0, 63.0,.
-12.0, 55.0, 12.0]3}]1, "text": "From:"}
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CHAPTER
TEN

KIE: DIFFERENCE BETWEEN CLOSESET & OPENSET

Being trained on WildReceipt, SDMG-R, or other KIE models, can identify the types of text boxes on a receipt picture.
But what SDMG-R can do is far more beyond that. For example, it’s able to identify key-value pairs on the picture. To
demonstrate such ability and hopefully facilitate future research, we release a demonstrative version of WildReceip-
tOpenset annotated in OpenSet format, and provide a full training/testing pipeline for KIE models such as SDMG-R.
Since it might be a confusing update, we’ll elaborate on the key differences between the OpenSet and CloseSet format,
taking WildReceipt as an example.

10.1 CloseSet

WildReceipt (“CloseSet”) divides text boxes into 26 categories. There are 12 key-value pairs of fine-grained key in-
formation categories, such as (Prod_item_value, Prod_item_key), (Prod_price_value, Prod_price_key) and
(Tax_value, Tax_key), plus two more “do not care” categories: Ignore and Others.

The objective of CloseSet SDMGR is to predict which category fits the text box best, but it will not predict the relations
among text boxes. For instance, if there are four text boxes “Hamburger”, “Hotdog”, “$1” and “$2” on the receipt, the
model may assign Prod_item_value to the first two boxes and Prod_price_value to the last two, but it can’t tell if
Hamburger sells for $1 or $2. However, this could be achieved in the open-set variant.

Warning: A *_key and *_value pair do not necessarily have to both appear on the receipt. For example,
we usually won’t see Prod_item_key appearing on the receipt, while there can be multiple boxes annotated as
Pred_item_value. In contrast, Tax_key and Tax_value are likely to appear together since they’re usually struc-
tured as Tax: 11.02 on the receipt.

10.2 OpenSet

In OpenSet, all text boxes, or nodes, have only 4 possible categories: background, key, value, and others. The
connectivity between nodes are annotated as edge labels. If a pair of key-value nodes have the same edge label, they
are connected by an valid edge.

Multiple nodes can have the same edge label. However, only key and value nodes will be linked by edges. The nodes
of same category will never be connected.

When making OpenSet annotations, each node must have an edge label. It should be an unique one if it falls into
non-key non-value categories.
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Note: You can merge background to others if telling background apart is not important, and we provide this choice
in the conversion script for WildReceipt .

10.2.1 Converting WildReceipt from CloseSet to OpenSet

We provide a conversion script that converts WildRecipt-like dataset to OpenSet format. This script links every key-
value pairs following the rules above. Here’s an example illustration: (For better understanding, all the node labels
are presented as texts)

Warning: A common request from our community is to extract the relations between food items and food prices.
In this case, this conversion script is not you need. Wildrecipt doesn’t provide necessary information to recover this
relation. For instance, there are four text boxes “Hamburger”, “Hotdog”, “$1” and “$2” on the receipt, and here’s
how they actually look like before and after the conversion:

So there won’t be any valid edges connecting them. Nevertheless, OpenSet format is far more general than CloseSet,
so this task can be achieved by annotating the data from scratch.
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CHAPTER
ELEVEN

ENABLE BLANK SPACE RECOGNITION

It is noteworthy that the LineStrParser should NOT be used to parse the annotation files containing multiple blank
spaces (in file name or recognition transcriptions). The users have to convert the plain txt annotations to json
lines to enable space recognition. For example:

% A plain txt annotation file that contains blank spaces
test/img 1.jpg Hello World!

test/img 2.jpg Hello Open MMLab!

test/img 3.jpg Hello MMOCR!

The LineStrParser will split the above annotation line to pieces (e.g. [‘test/img’, ‘1.jpg’, ‘Hello’, “World!’]) that
cannot be matched to the keys (e.g. [‘filename’, ‘text’]). Therefore, we need to convert it to a json line format by
json.dumps (check here to see how to dump jsonl), and then the annotation file will look like as follows:

% A json line annotation file that contains blank spaces
{"filename": "test/img 1.jpg", "text": "Hello World!"}
{"filename": "test/img 2.jpg", "text": "Hello Open MMLab!"}
{"filename": "test/img 3.jpg", "text": "Hello MMOCR!"}

After converting the annotation format, you just need to set the parser arguments as:

parser=dict(
type="'LineJsonParser',
keys=['filename', 'text']))

Besides, you need to specify a dict that contains blank space to enable blank recognition. Particularly, MMOCR
provides two built-in dicts DICT37 and DICT91 that contain blank space. For example, change the default dict_type
in configs/_base_/recog_models/crnn.py to DICT37.

label_convertor = dict(
type='CTCConvertor', dict_type='DICT37', with_unknown=False, lower=True) # [DICT36’,
—'DICT37', DICT90', DICTI91']
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CHAPTER
TWELVE

STATISTICS

* Number of checkpoints: 33
* Number of configs: 26
e Number of papers: 19

— ALGORITHM: 19

12.1 Key Information Extraction Models

* Number of checkpoints: 3
* Number of configs: 3
* Number of papers: 1

— [ALGORITHM] Spatial Dual-Modality Graph Reasoning for Key Information Extraction

12.2 Named Entity Recognition Models

¢ Number of checkpoints: 1
* Number of configs: 1
* Number of papers: 1

— [ALGORITHM] Bert: Pre-Training of Deep Bidirectional Transformers for Language Understanding

12.3 Text Detection Models

¢ Number of checkpoints: 15
* Number of configs: 11
e Number of papers: 8
— [ALGORITHM] Deep Relational Reasoning Graph Network for Arbitrary Shape Text Detection
— [ALGORITHM] Efficient and Accurate Arbitrary-Shaped Text Detection With Pixel Aggregation Network
— [ALGORITHM] Fourier Contour Embedding for Arbitrary-Shaped Text Detection
— [ALGORITHM] Mask R-CNN
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— [ALGORITHM] Real-Time Scene Text Detection With Differentiable Binarization and Adaptive Scale
Fusion

— [ALGORITHM] Real-Time Scene Text Detection With Differentiable Binarization
— [ALGORITHM] Shape Robust Text Detection With Progressive Scale Expansion Network
— [ALGORITHM] Textsnake: A Flexible Representation for Detecting Text of Arbitrary Shapes

12.4 Text Recognition Models

* Number of checkpoints: 14
e Number of configs: 11
* Number of papers: 9

— [ALGORITHM] An End-to-End Trainable Neural Network for Image-Based Sequence Recognition and Its
Application to Scene Text Recognition

— [ALGORITHM] Nrtr: A No-Recurrence Sequence-to-Sequence Model for Scene Text Recognition
— [ALGORITHM] On Recognizing Texts of Arbitrary Shapes With 2d Self-Attention

— [ALGORITHM] Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for
Scene Text Recognition

— [ALGORITHM] Robust Scene Text Recognition With Automatic Rectification

— [ALGORITHM] Robustscanner: Dynamically Enhancing Positional Clues for Robust Text Recognition
— [ALGORITHM] Segocr Simple Baseline.

— [ALGORITHM] Show, Attend and Read: A Simple and Strong Baseline for Irregular Text Recognition
— [ALGORITHM] {Master
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CHAPTER
THIRTEEN

MODEL ARCHITECTURE SUMMARY

MMOCR has implemented many models that support various tasks. Depending on the type of tasks, these models have
different architectural designs and, therefore, might be a bit confusing for beginners to master. We release a primary
design doc to clearly illustrate the basic task-specific architectures and provide quick pointers to docstrings of model
components to aid users’ understanding.

13.1 Text Detection Models

The design of text detectors is similar to SingleStageDetector in MMDetection. The feature of an image was first
extracted by backbone (e.g., ResNet), and neck further processes raw features into a head-ready format, where the
models in MMOCR usually adapt the variants of FPN to extract finer-grained multi-level features. bbox_head is the
core of text detectors, and its implementation varies in different models.

When training, the output of bbox_head is directly fed into the 1oss module, which compares the output with the
ground truth and generates a loss dictionary for optimizer’s use. When testing, Postprocessor converts the outputs
from bbox_head to bounding boxes, which will be used for evaluation metrics (e.g., hmean-iou) and visualization.

13.1.1 DBNet

¢ Backbone: mmdet.ResNet

Neck: FPNC
e Bbox_head: DBHead
e Loss: DBLoss

 Postprocessor: DBPostprocessor

13.1.2 DRRG

¢ Backbone: mmdet.ResNet
Neck: FPN_UNet
¢ Bbox_head: DRRGHead

Loss: DRRGLoss

* Postprocessor: DRRGPostprocessor
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13.1.3 FCENet

e Backbone: mmdet.ResNet
e Neck: mmdet.FPN
¢ Bbox_head: FCEHead

Loss: FCELoss

* Postprocessor: FCEPostprocessor

13.1.4 Mask R-CNN

We use the same architecture as in MMDetection. See MMDetection’s config documentation for details.

13.1.5 PANet

¢ Backbone: mmdet.ResNet
Neck: FPEM_FFM
¢ Bbox_head: PANHead

Loss: PANLoss

* Postprocessor: PANPostprocessor

13.1.6 PSENet

* Backbone: mmdet.ResNet
* Neck: FPNF

* Bbox_head: PSEHead

* Loss: PSELoss

 Postprocessor: PSEPostprocessor

13.1.7 Textsnake

¢ Backbone: mmdet.ResNet
Neck: FPN_UNet
¢ Bbox_head: TextSnakeHead

e Loss: TextSnakelLoss

* Postprocessor: TextSnakePostprocessor
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13.2 Text Recognition Models

Most of the implemented recognizers use the following architecture:

preprocessor refers to any network that processes images before they are fed to backbone. encoder encodes images
features into a hidden vector, which is then transcribed into text tokens by decoder.

The architecture diverges at training and test phases. The loss module returns a dictionary during training. In testing,
converter is invoked to convert raw features into texts, which are wrapped into a dictionary together with confidence
scores. Users can access the dictionary with the text and score keys to query the recognition result.

13.2.1 ABINet

* Preprocessor: None

* Backbone: ResNetABI

* Encoder: ABIVisionModel

* Decoder: ABIVisionDecoder
e Fuser: ABIFuser

e Loss: ABILoss

e Converter: ABIConvertor

Note: Fuser fuses the feature output from encoder and decoder before generating the final text outputs and computing
the loss in full ABINet.

13.2.2 CRNN

* Preprocessor: None
* Backbone: VeryDeepVgg
* Encoder: None

e Decoder: CRNNDecoder

Loss: CTCLoss

¢ Converter: CTCConvertor

13.2.3 CRNN with TPS-based STN

* Preprocessor: TPSPreprocessor
* Backbone: VeryDeepVgg

* Encoder: None

* Decoder: CRNNDecoder
Loss: CTCLoss

¢ Converter: CTCConvertor
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13.2.4 MASTER

Preprocessor: None
Backbone: ResNet
Encoder: None

Decoder: MasterDecoder
Loss: TFLoss

Converter: AttnConvertor

13.2.5 NRTR

Preprocessor: None
Backbone: ResNet310CR
Encoder: NRTREncoder
Decoder: NRTRDecoder
Loss: TFLoss

Converter: AttnConvertor

13.2.6 RobustScanner

Preprocessor: None

Backbone: ResNet310CR

Encoder: ChannelReductionEncoder
Decoder: ChannelReductionEncoder
Loss: SARLoss

Converter: AttnConvertor

13.2.7 SAR

Preprocessor: None
Backbone: ResNet310CR
Encoder: SAREncoder
Decoder: ParallelSARDecoder
Loss: SARLoss

Converter: AttnConvertor
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13.2.8 SATRN

* Preprocessor: None

* Backbone: ShallowCNN
* Encoder: SatrnEncoder
* Decoder: NRTRDecoder
e Loss: TFLoss

¢ Converter: AttnConvertor

13.2.9 SegOCR

* Backbone: ResNet310CR
* Neck: FPNOCR

¢ Head: SegHead

* Loss: Segl.oss

* Converter: SegConvertor

Note: SegOCR’s architecture is an exception - it is closer to text detection models.

13.3 Key Information Extraction Models

The architecture of key information extraction (KIE) models is similar to text detection models, except for the extra
feature extractor. As a downstream task of OCR, KIE models are required to run with bounding box annotations
indicating the locations of text instances, from which an ROI extractor extracts the cropped features for bbox_head to
discover relations among them.

The output containing edges and nodes information from bbox_head is sufficient for test and inference. Computation
of loss also relies on such information.

13.3.1 SDMGR

* Backbone: UNet

* Neck: None

e Extractor: mmdet.SingleRolExtractor
e Bbox_head: SDMGRHead

* Loss: SDMGRLoss

13.3. Key Information Extraction Models 65


https://mmocr.readthedocs.io/en/latest/api.html#mmocr.models.textrecog.backbones.ShallowCNN
https://mmocr.readthedocs.io/en/latest/api.html#mmocr.models.textrecog.encoders.SatrnEncoder
https://mmocr.readthedocs.io/en/latest/api.html#mmocr.models.textrecog.decoders.NRTRDecoder
https://mmocr.readthedocs.io/en/latest/api.html#mmocr.models.textrecog.losses.TFLoss
https://mmocr.readthedocs.io/en/latest/api.html#mmocr.models.textrecog.convertors.AttnConvertor
https://mmocr.readthedocs.io/en/latest/api.html#mmocr.models.textrecog.backbones.ResNet31OCR
https://mmocr.readthedocs.io/en/latest/api.html#mmocr.models.textrecog.necks.FPNOCR
https://mmocr.readthedocs.io/en/latest/api.html#mmocr.models.textrecog.heads.SegHead
https://mmocr.readthedocs.io/en/latest/api.html#mmocr.models.textrecog.losses.SegLoss
https://mmocr.readthedocs.io/en/latest/api.html#mmocr.models.textrecog.convertors.SegConvertor
https://mmocr.readthedocs.io/en/latest/api.html#mmocr.models.common.backbones.UNet
https://mmdetection.readthedocs.io/en/latest/api.html#mmdet.models.roi_heads.SingleRoIExtractor
https://mmocr.readthedocs.io/en/latest/api.html#mmocr.models.kie.heads.SDMGRHead
https://mmocr.readthedocs.io/en/latest/api.html#mmocr.models.kie.losses.SDMGRLoss

MMOCR, Release 0.6.3

66

Chapter 13. Model Architecture Summary



CHAPTER
FOURTEEN

TEXT DETECTION MODELS

14.1 DBNet

Real-time Scene Text Detection with Differentiable Binarization

14.1.1 Abstract

Recently, segmentation-based methods are quite popular in scene text detection, as the segmentation results can more
accurately describe scene text of various shapes such as curve text. However, the post-processing of binarization is
essential for segmentation-based detection, which converts probability maps produced by a segmentation method into
bounding boxes/regions of text. In this paper, we propose a module named Differentiable Binarization (DB), which
can perform the binarization process in a segmentation network. Optimized along with a DB module, a segmenta-
tion network can adaptively set the thresholds for binarization, which not only simplifies the post-processing but also
enhances the performance of text detection. Based on a simple segmentation network, we validate the performance
improvements of DB on five benchmark datasets, which consistently achieves state-of-the-art results, in terms of both
detection accuracy and speed. In particular, with a light-weight backbone, the performance improvements by DB are
significant so that we can look for an ideal tradeoff between detection accuracy and efficiency. Specifically, with a
backbone of ResNet-18, our detector achieves an F-measure of 82.8, running at 62 FPS, on the MSRA-TD500 dataset.

14.1.2 Results and models
ICDAR2015

14.1.3 Citation

@article{Liao_Wan_Yao_Chen_Bai_2020,
title={Real-Time Scene Text Detection with Differentiable Binarization},
journal={Proceedings of the AAAI Conference on Artificial Intelligence},
author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
year={2020},
pages={11474-11481}}%
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14.2 DBNetpp

Real-Time Scene Text Detection with Differentiable Binarization and Adaptive Scale Fusion

14.2.1 Abstract

Recently, segmentation-based scene text detection methods have drawn extensive attention in the scene text detection
field, because of their superiority in detecting the text instances of arbitrary shapes and extreme aspect ratios, profit-
ing from the pixel-level descriptions. However, the vast majority of the existing segmentation-based approaches are
limited to their complex post-processing algorithms and the scale robustness of their segmentation models, where the
post-processing algorithms are not only isolated to the model optimization but also time-consuming and the scale ro-
bustness is usually strengthened by fusing multi-scale feature maps directly. In this paper, we propose a Differentiable
Binarization (DB) module that integrates the binarization process, one of the most important steps in the post-processing
procedure, into a segmentation network. Optimized along with the proposed DB module, the segmentation network
can produce more accurate results, which enhances the accuracy of text detection with a simple pipeline. Furthermore,
an efficient Adaptive Scale Fusion (ASF) module is proposed to improve the scale robustness by fusing features of
different scales adaptively. By incorporating the proposed DB and ASF with the segmentation network, our proposed
scene text detector consistently achieves state-of-the-art results, in terms of both detection accuracy and speed, on five
standard benchmarks.

14.2.2 Results and models
ICDAR2015

14.2.3 Citation

@article{liao2022real,

title={Real-Time Scene Text Detection with Differentiable Binarization and Adaptive.
—Scale Fusion},

author={Liao, Minghui and Zou, Zhisheng and Wan, Zhaoyi and Yao, Cong and Bai, Xiang}

journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
year={2022},
publisher={IEEE}

}

14.3 DRRG

Deep relational reasoning graph network for arbitrary shape text detection
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14.3.1 Abstract

Arbitrary shape text detection is a challenging task due to the high variety and complexity of scenes texts. In this paper,
we propose a novel unified relational reasoning graph network for arbitrary shape text detection. In our method, an
innovative local graph bridges a text proposal model via Convolutional Neural Network (CNN) and a deep relational
reasoning network via Graph Convolutional Network (GCN), making our network end-to-end trainable. To be con-
crete, every text instance will be divided into a series of small rectangular components, and the geometry attributes
(e.g., height, width, and orientation) of the small components will be estimated by our text proposal model. Given the
geometry attributes, the local graph construction model can roughly establish linkages between different text compo-
nents. For further reasoning and deducing the likelihood of linkages between the component and its neighbors, we
adopt a graph-based network to perform deep relational reasoning on local graphs. Experiments on public available
datasets demonstrate the state-of-the-art performance of our method.

14.3.2 Results and models

CTW1500

Note: We’ve upgraded our IoU backend from Polygon3 to shapely. There are some performance differences for
some models due to the backends’ different logics to handle invalid polygons (more info here). New evaluation result
is presented in brackets and new logs will be uploaded soon.

14.3.3 Citation

@article{zhang2020drrg,
title={Deep relational reasoning graph network for arbitrary shape text detection},
author={Zhang, Shi-Xue and Zhu, Xiaobin and Hou, Jie-Bo and Liu, Chang and Yang, Chun.
—and Wang, Hongfa and Yin, Xu-Cheng},
booktitle={CVPR},
pages={9699-9708},
year={2020}
}

14.4 FCENet

Fourier Contour Embedding for Arbitrary-Shaped Text Detection

14.4.1 Abstract

One of the main challenges for arbitrary-shaped text detection is to design a good text instance representation that
allows networks to learn diverse text geometry variances. Most of existing methods model text instances in image
spatial domain via masks or contour point sequences in the Cartesian or the polar coordinate system. However, the
mask representation might lead to expensive post-processing, while the point sequence one may have limited capa-
bility to model texts with highly-curved shapes. To tackle these problems, we model text instances in the Fourier
domain and propose one novel Fourier Contour Embedding (FCE) method to represent arbitrary shaped text contours
as compact signatures. We further construct FCENet with a backbone, feature pyramid networks (FPN) and a sim-
ple post-processing with the Inverse Fourier Transformation (IFT) and Non-Maximum Suppression (NMS). Different
from previous methods, FCENet first predicts compact Fourier signatures of text instances, and then reconstructs text
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contours via IFT and NMS during test. Extensive experiments demonstrate that FCE is accurate and robust to fit con-
tours of scene texts even with highly-curved shapes, and also validate the effectiveness and the good generalization of
FCENet for arbitrary-shaped text detection. Furthermore, experimental results show that our FCENet is superior to the
state-of-the-art (SOTA) methods on CTW 1500 and Total-Text, especially on challenging highly-curved text subset.

14.4.2 Results and models
CTW1500
ICDAR2015

14.4.3 Citation

@InProceedings{zhu2021fourier,
title={Fourier Contour Embedding for Arbitrary-Shaped Text Detection},
author={Yiqin Zhu and Jianyong Chen and Lingyu Liang and Zhanghui Kuang and.
—Lianwen Jin and Wayne Zhang},
year={2021},
booktitle = {CVPR}
}

14.5 Mask R-CNN

Mask R-CNN

14.5.1 Abstract

We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach
efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each
instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask
in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a
small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g.,
allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO
suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection.
Without bells and whistles, Mask R-CNN outperforms all existing, single-model entries on every task, including the
COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease
future research in instance-level recognition.

14.5.2 Results and models

CTW1500

ICDAR2015
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ICDAR2017

Note: We tuned parameters with the techniques in Pyramid Mask Text Detector

14.5.3 Citation

@INPROCEEDINGS{8237584,
author={K. {He} and G. {Gkioxari} and P. {Dollar} and R. {Girshick}},
booktitle={2017 IEEE International Conference on Computer Vision (ICCV)},
title={Mask R-CNN},
year={2017},
pages={2980-2988},
doi={10.1109/ICCV.2017.322}}

14.6 PANet

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

14.6.1 Abstract

Scene text detection, an important step of scene text reading systems, has witnessed rapid development with convolu-
tional neural networks. Nonetheless, two main challenges still exist and hamper its deployment to real-world applica-
tions. The first problem is the trade-off between speed and accuracy. The second one is to model the arbitrary-shaped
text instance. Recently, some methods have been proposed to tackle arbitrary-shaped text detection, but they rarely
take the speed of the entire pipeline into consideration, which may fall short in practical this http URL this paper, we
propose an efficient and accurate arbitrary-shaped text detector, termed Pixel Aggregation Network (PAN), which is
equipped with a low computational-cost segmentation head and a learnable post-processing. More specifically, the
segmentation head is made up of Feature Pyramid Enhancement Module (FPEM) and Feature Fusion Module (FFM).
FPEM is a cascadable U-shaped module, which can introduce multi-level information to guide the better segmentation.
FFM can gather the features given by the FPEMs of different depths into a final feature for segmentation. The learnable
post-processing is implemented by Pixel Aggregation (PA), which can precisely aggregate text pixels by predicted sim-
ilarity vectors. Experiments on several standard benchmarks validate the superiority of the proposed PAN. It is worth
noting that our method can achieve a competitive F-measure of 79.9% at 84.2 FPS on CTW1500.

14.6.2 Results and models

CTW1500

ICDAR2015

Note: We’ve upgraded our IoU backend from Polygon3 to shapely. There are some performance differences for
some models due to the backends’ different logics to handle invalid polygons (more info here). New evaluation result
is presented in brackets and new logs will be uploaded soon.
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14.6.3 Citation

@inproceedings{WangXSZWLYS19,

author={Wenhai Wang and Enze Xie and Xiaoge Song and Yuhang Zang and Wenjia Wang and.
—~Tong Lu and Gang Yu and Chunhua Shen},

title={Efficient and Accurate Arbitrary-Shaped Text Detection With Pixel Aggregation.
—Network},

booktitle={ICCV},

pages={8439--8448},

year={2019}

}

14.7 PSENet

Shape robust text detection with progressive scale expansion network

14.7.1 Abstract

Scene text detection has witnessed rapid progress especially with the recent development of convolutional neural net-
works. However, there still exists two challenges which prevent the algorithm into industry applications. On the one
hand, most of the state-of-art algorithms require quadrangle bounding box which is in-accurate to locate the texts with
arbitrary shape. On the other hand, two text instances which are close to each other may lead to a false detection which
covers both instances. Traditionally, the segmentation-based approach can relieve the first problem but usually fail to
solve the second challenge. To address these two challenges, in this paper, we propose a novel Progressive Scale Ex-
pansion Network (PSENet), which can precisely detect text instances with arbitrary shapes. More specifically, PSENet
generates the different scale of kernels for each text instance, and gradually expands the minimal scale kernel to the text
instance with the complete shape. Due to the fact that there are large geometrical margins among the minimal scale
kernels, our method is effective to split the close text instances, making it easier to use segmentation-based methods
to detect arbitrary-shaped text instances. Extensive experiments on CTW1500, Total-Text, ICDAR 2015 and ICDAR
2017 MLT validate the effectiveness of PSENet. Notably, on CTW1500, a dataset full of long curve texts, PSENet
achieves a F-measure of 74.3% at 27 FPS, and our best F-measure (82.2%) outperforms state-of-art algorithms by
6.6%. The code will be released in the future.

14.7.2 Results and models

CTW1500

ICDAR2015

Note: We’ve upgraded our IoU backend from Polygon3 to shapely. There are some performance differences for
some models due to the backends’ different logics to handle invalid polygons (more info here). New evaluation result
is presented in brackets and new logs will be uploaded soon.
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14.7.3 Citation

@inproceedings{wang2019shape,
title={Shape robust text detection with progressive scale expansion network},
author={Wang, Wenhai and Xie, Enze and Li, Xiang and Hou, Wenbo and Lu, Tong and Yu,.
—Gang and Shao, Shuai},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern.,
—Recognition},
pages={9336--9345},
year={2019}
}

14.8 Texisnake

TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes

14.8.1 Abstract

Driven by deep neural networks and large scale datasets, scene text detection methods have progressed substantially
over the past years, continuously refreshing the performance records on various standard benchmarks. However, limited
by the representations (axis-aligned rectangles, rotated rectangles or quadrangles) adopted to describe text, existing
methods may fall short when dealing with much more free-form text instances, such as curved text, which are actually
very common in real-world scenarios. To tackle this problem, we propose a more flexible representation for scene text,
termed as TextSnake, which is able to effectively represent text instances in horizontal, oriented and curved forms. In
TextSnake, a text instance is described as a sequence of ordered, overlapping disks centered at symmetric axes, each
of which is associated with potentially variable radius and orientation. Such geometry attributes are estimated via
a Fully Convolutional Network (FCN) model. In experiments, the text detector based on TextSnake achieves state-
of-the-art or comparable performance on Total-Text and SCUT-CTW 1500, the two newly published benchmarks with
special emphasis on curved text in natural images, as well as the widely-used datasets ICDAR 2015 and MSRA-TD500.
Specifically, TextSnake outperforms the baseline on Total-Text by more than 40% in F-measure.

14.8.2 Results and models
CTW1500

14.8.3 Citation

@article{long2018textsnake,
title={TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes},
author={Long, Shangbang and Ruan, Jiagiang and Zhang, Wenjie and He, Xin and Wu,.
—Wenhao and Yao, Cong},
booktitle={ECCV},
pages={20-36},
year={2018}
}
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CHAPTER
FIFTEEN

TEXT RECOGNITION MODELS

15.1 ABINet

Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition

15.1.1 Abstract

Linguistic knowledge is of great benefit to scene text recognition. However, how to effectively model linguistic rules
in end-to-end deep networks remains a research challenge. In this paper, we argue that the limited capacity of lan-
guage models comes from: 1) implicitly language modeling; 2) unidirectional feature representation; and 3) language
model with noise input. Correspondingly, we propose an autonomous, bidirectional and iterative ABINet for scene text
recognition. Firstly, the autonomous suggests to block gradient flow between vision and language models to enforce
explicitly language modeling. Secondly, a novel bidirectional cloze network (BCN) as the language model is pro-
posed based on bidirectional feature representation. Thirdly, we propose an execution manner of iterative correction
for language model which can effectively alleviate the impact of noise input. Additionally, based on the ensemble of
iterative predictions, we propose a self-training method which can learn from unlabeled images effectively. Extensive
experiments indicate that ABINet has superiority on low-quality images and achieves state-of-the-art results on several
mainstream benchmarks. Besides, the ABINet trained with ensemble self-training shows promising improvement in
realizing human-level recognition.

15.1.2 Dataset

Train Dataset

Test Dataset

15.1.3 Results and models

Note:

1. ABINet allows its encoder to run and be trained without decoder and fuser. Its encoder is designed to recognize
texts as a stand-alone model and therefore can work as an independent text recognizer. We release it as ABINet-
Vision.

2. Facts about the pretrained model: MMOCR does not have a systematic pipeline to pretrain the language model
(LM) yet, thus the weights of LM are converted from the official pretrained model. The weights of ABINet-Vision
are directly used as the vision model of ABINet.
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3. Due to some technical issues, the training process of ABINet was interrupted at the 13th epoch and we resumed
it later. Both logs are released for full reference.

4. The model architecture in the logs looks slightly different from the final released version, since it was refactored
afterward. However, both architectures are essentially equivalent.

15.1.4 Citation

@article{fang2021lread,

title={Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for.,
—Scene Text Recognition},

author={Fang, Shancheng and Xie, Hongtao and Wang, Yuxin and Mao, Zhendong and Zhang,.
—Yongdong},

booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern.,

—Recognition},

year={2021}
}

15.2 CRNN

An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recog-
nition

15.2.1 Abstract

Image-based sequence recognition has been a long-standing research topic in computer vision. In this paper, we inves-
tigate the problem of scene text recognition, which is among the most important and challenging tasks in image-based
sequence recognition. A novel neural network architecture, which integrates feature extraction, sequence modeling
and transcription into a unified framework, is proposed. Compared with previous systems for scene text recognition,
the proposed architecture possesses four distinctive properties: (1) It is end-to-end trainable, in contrast to most of the
existing algorithms whose components are separately trained and tuned. (2) It naturally handles sequences in arbitrary
lengths, involving no character segmentation or horizontal scale normalization. (3) It is not confined to any predefined
lexicon and achieves remarkable performances in both lexicon-free and lexicon-based scene text recognition tasks. (4)
It generates an effective yet much smaller model, which is more practical for real-world application scenarios. The
experiments on standard benchmarks, including the IIIT-5K, Street View Text and ICDAR datasets, demonstrate the
superiority of the proposed algorithm over the prior arts. Moreover, the proposed algorithm performs well in the task
of image-based music score recognition, which evidently verifies the generality of it.

15.2.2 Dataset

Train Dataset
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Test Dataset
15.2.3 Results and models

15.2.4 Citation

@article{shi2016end,

title={An end-to-end trainable neural network for image-based sequence recognition and.
—its application to scene text recognition},

author={Shi, Baoguang and Bai, Xiang and Yao, Cong},

journal={IEEE transactions on pattern analysis and machine intelligence},

year={2016}
}

15.3 MASTER

MASTER: Multi-aspect non-local network for scene text recognition

15.3.1 Abstract

Attention-based scene text recognizers have gained huge success, which leverages a more compact intermediate rep-
resentation to learn 1d- or 2d- attention by a RNN-based encoder-decoder architecture. However, such methods suffer
from attention-drift problem because high similarity among encoded features leads to attention confusion under the
RNN-based local attention mechanism. Moreover, RNN-based methods have low efficiency due to poor paralleliza-
tion. To overcome these problems, we propose the MASTER, a self-attention based scene text recognizer that (1) not
only encodes the input-output attention but also learns self-attention which encodes feature-feature and target-target
relationships inside the encoder and decoder and (2) learns a more powerful and robust intermediate representation to
spatial distortion, and (3) owns a great training efficiency because of high training parallelization and a high-speed in-
ference because of an efficient memory-cache mechanism. Extensive experiments on various benchmarks demonstrate
the superior performance of our MASTER on both regular and irregular scene text.

15.3.2 Dataset

Train Dataset

Test Dataset
15.3.3 Results and Models

15.3.4 Citation

@article{Lu2021MASTER,
title={{MASTER}: Multi-Aspect Non-local Network for Scene Text Recognition},
author={Ning Lu and Wenwen Yu and Xianbiao Qi and Yihao Chen and Ping Gong and Rong.
—Xiao and Xiang Bai}l,
journal={Pattern Recognition},
year={2021}
}
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15.4 NRTR

NRTR: A No-Recurrence Sequence-to-Sequence Model For Scene Text Recognition

15.4.1 Abstract

Scene text recognition has attracted a great many researches due to its importance to various applications. Existing
methods mainly adopt recurrence or convolution based networks. Though have obtained good performance, these
methods still suffer from two limitations: slow training speed due to the internal recurrence of RNNs, and high com-
plexity due to stacked convolutional layers for long-term feature extraction. This paper, for the first time, proposes a
no-recurrence sequence-to-sequence text recognizer, named NRTR, that dispenses with recurrences and convolutions
entirely. NRTR follows the encoder-decoder paradigm, where the encoder uses stacked self-attention to extract image
features, and the decoder applies stacked self-attention to recognize texts based on encoder output. NRTR relies solely
on self-attention mechanism thus could be trained with more parallelization and less complexity. Considering scene
image has large variation in text and background, we further design a modality-transform block to effectively transform
2D input images to 1D sequences, combined with the encoder to extract more discriminative features. NRTR achieves
state-of-the-art or highly competitive performance on both regular and irregular benchmarks, while requires only a
small fraction of training time compared to the best model from the literature (at least 8 times faster).

15.4.2 Dataset

Train Dataset

Test Dataset

15.4.3 Results and Models

Note:
¢ For backbone R31-1/16-1/8:

— The output consists of 92 classes, including 26 lowercase letters, 26 uppercase letters, 28 symbols, 10 digital
numbers, 1 unknown token and 1 end-of-sequence token.

— The encoder-block number is 6.
— 1/16-1/8 means the height of feature from backbone is 1/16 of input image, where 1/8 for width.
¢ For backbone R31-1/8-1/4:

— The output consists of 92 classes, including 26 lowercase letters, 26 uppercase letters, 28 symbols, 10 digital
numbers, 1 unknown token and 1 end-of-sequence token.

— The encoder-block number is 6.

— 1/8-1/4 means the height of feature from backbone is 1/8 of input image, where 1/4 for width.
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15.4.4 Citation

@inproceedings{sheng2019nrtr,
title={NRTR: A no-recurrence sequence-to-sequence model for scene text recognition},
author={Sheng, Fenfen and Chen, Zhineng and Xu, Bo},
booktitle={2019 International Conference on Document Analysis and Recognition (ICDAR)},
pages={781--786},
year={2019},
organization={IEEE}

15.5 RobustScanner

RobustScanner: Dynamically Enhancing Positional Clues for Robust Text Recognition

15.5.1 Abstract

The attention-based encoder-decoder framework has recently achieved impressive results for scene text recognition,
and many variants have emerged with improvements in recognition quality. However, it performs poorly on contextless
texts (e.g., random character sequences) which is unacceptable in most of real application scenarios. In this paper, we
first deeply investigate the decoding process of the decoder. We empirically find that a representative character-level
sequence decoder utilizes not only context information but also positional information. Contextual information, which
the existing approaches heavily rely on, causes the problem of attention drift. To suppress such side-effect, we propose
a novel position enhancement branch, and dynamically fuse its outputs with those of the decoder attention module for
scene text recognition. Specifically, it contains a position aware module to enable the encoder to output feature vectors
encoding their own spatial positions, and an attention module to estimate glimpses using the positional clue (i.e., the
current decoding time step) only. The dynamic fusion is conducted for more robust feature via an element-wise gate
mechanism. Theoretically, our proposed method, dubbed \emph{RobustScanner}, decodes individual characters with
dynamic ratio between context and positional clues, and utilizes more positional ones when the decoding sequences
with scarce context, and thus is robust and practical. Empirically, it has achieved new state-of-the-art results on popular
regular and irregular text recognition benchmarks while without much performance drop on contextless benchmarks,
validating its robustness in both contextual and contextless application scenarios.

15.5.2 Dataset

Train Dataset

Test Dataset

15.5.3 Results and Models
15.5.4 References

[1] Li, Hui and Wang, Peng and Shen, Chunhua and Zhang, Guyu. Show, attend and read: A simple and strong baseline
for irregular text recognition. In AAAI 2019.
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15.5.5 Citation

@inproceedings{yue2020robustscanner,

title={RobustScanner: Dynamically Enhancing Positional Clues for Robust Text.
—Recognition},

author={Yue, Xiaoyu and Kuang, Zhanghui and Lin, Chenhao and Sun, Hongbin and Zhang,.
—Wayne},

booktitle={European Conference on Computer Vision},

year={2020}
}

15.6 SAR

Show, Attend and Read: A Simple and Strong Baseline for Irregular Text Recognition

15.6.1 Abstract

Recognizing irregular text in natural scene images is challenging due to the large variance in text appearance, such as
curvature, orientation and distortion. Most existing approaches rely heavily on sophisticated model designs and/or extra
fine-grained annotations, which, to some extent, increase the difficulty in algorithm implementation and data collection.
In this work, we propose an easy-to-implement strong baseline for irregular scene text recognition, using off-the-shelf
neural network components and only word-level annotations. It is composed of a 31-layer ResNet, an LSTM-based
encoder-decoder framework and a 2-dimensional attention module. Despite its simplicity, the proposed method is
robust and achieves state-of-the-art performance on both regular and irregular scene text recognition benchmarks.

15.6.2 Dataset

Train Dataset

Test Dataset
15.6.3 Results and Models
15.6.4 Chinese Dataset

15.6.5 Results and Models

Note:

R31-1/8-1/4 means the height of feature from backbone is 1/8 of input image, where 1/4 for width.

* We did not use beam search during decoding.

* We implemented two kinds of decoder. Namely, ParallelSARDecoder and SequentialSARDecoder.
— ParallelSARDecoder: Parallel decoding during training with LSTM layer. It would be faster.

— SequentialSARDecoder: Sequential Decoding during training with LSTMCell. It would be easier to
understand.

¢ For train dataset.
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— We did not construct distinct data groups (20 groups in [1]) to train the model group-by-group since it
would render model training too complicated.

— Instead, we randomly selected 2.4m patches from Syn90k, 2.4m from SynthText and 1.2m from
SynthAdd, and grouped all data together. See config for details.

* We used 48 GPUs with total_batch_size = 64 * 48 in the experiment above to speedup training, while
keeping the initial 1lr = 1le-3 unchanged.

15.6.6 Citation

@inproceedings{1i2019show,
title={Show, attend and read: A simple and strong baseline for irregular text.
—recognition},
author={Li, Hui and Wang, Peng and Shen, Chunhua and Zhang, Guyu},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={33},
number={01},
pages={8610--8617},
year={2019}

15.7 SATRN

On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention

15.7.1 Abstract

Scene text recognition (STR) is the task of recognizing character sequences in natural scenes. While there have been
great advances in STR methods, current methods still fail to recognize texts in arbitrary shapes, such as heavily curved
or rotated texts, which are abundant in daily life (e.g. restaurant signs, product labels, company logos, etc). This
paper introduces a novel architecture to recognizing texts of arbitrary shapes, named Self-Attention Text Recognition
Network (SATRN), which is inspired by the Transformer. SATRN utilizes the self-attention mechanism to describe
two-dimensional (2D) spatial dependencies of characters in a scene text image. Exploiting the full-graph propagation
of self-attention, SATRN can recognize texts with arbitrary arrangements and large inter-character spacing. As a result,
SATRN outperforms existing STR models by a large margin of 5.7 pp on average in “irregular text” benchmarks. We
provide empirical analyses that illustrate the inner mechanisms and the extent to which the model is applicable (e.g.
rotated and multi-line text). We will open-source the code.

15.7.2 Dataset

Train Dataset
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Test Dataset
15.7.3 Results and Models

15.7.4 Citation

@article{junyeop2019recognizing,
title={On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention},
author={Junyeop Lee, Sungrae Park, Jeonghun Baek, Seong Joon Oh, Seonghyeon Kim,.,
—Hwalsuk Lee},
year={2019}
}

15.8 SegOCR

15.8.1 Abstract

Just a simple Seg-based baseline for text recognition tasks.

15.8.2 Dataset

Train Dataset

Test Dataset

15.8.3 Results and Models

Note:
* R31-1/16 means the size (both height and width ) of feature from backbone is 1/16 of input image.

¢ 1x means the size (both height and width) of feature from head is the same with input image.

15.8.4 Citation

@unpublished{key,
title={SegOCR Simple Baseline.},
author={},
note={Unpublished Manuscript},
year={2021}
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15.9 CRNN-STN

15.9.1 Abstract

Image-based sequence recognition has been a long-standing research topic in computer vision. In this paper, we inves-
tigate the problem of scene text recognition, which is among the most important and challenging tasks in image-based
sequence recognition. A novel neural network architecture, which integrates feature extraction, sequence modeling
and transcription into a unified framework, is proposed. Compared with previous systems for scene text recognition,
the proposed architecture possesses four distinctive properties: (1) It is end-to-end trainable, in contrast to most of the
existing algorithms whose components are separately trained and tuned. (2) It naturally handles sequences in arbitrary
lengths, involving no character segmentation or horizontal scale normalization. (3) It is not confined to any predefined
lexicon and achieves remarkable performances in both lexicon-free and lexicon-based scene text recognition tasks. (4)
It generates an effective yet much smaller model, which is more practical for real-world application scenarios. The
experiments on standard benchmarks, including the IIIT-5K, Street View Text and ICDAR datasets, demonstrate the
superiority of the proposed algorithm over the prior arts. Moreover, the proposed algorithm performs well in the task
of image-based music score recognition, which evidently verifies the generality of it.

Note: We use STN from this paper as the preprocessor and CRNN as the recognition network.

15.9.2 Dataset

Train Dataset
Test Dataset
15.9.3 Results and models

15.9.4 Citation

@article{shi2016robust,
title={Robust Scene Text Recognition with Automatic Rectification},
author={Shi, Baoguang and Wang, Xinggang and Lyu, Pengyuan and Yao,
Cong and Bai, Xiang},
year={2016}

}
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CHAPTER
SIXTEEN

KEY INFORMATION EXTRACTION MODELS

16.1 SDMGR

Spatial Dual-Modality Graph Reasoning for Key Information Extraction

16.1.1 Abstract

Key information extraction from document images is of paramount importance in office automation. Conventional
template matching based approaches fail to generalize well to document images of unseen templates, and are not
robust against text recognition errors. In this paper, we propose an end-to-end Spatial Dual-Modality Graph Reasoning
method (SDMG-R) to extract key information from unstructured document images. We model document images as
dual-modality graphs, nodes of which encode both the visual and textual features of detected text regions, and edges
of which represent the spatial relations between neighboring text regions. The key information extraction is solved by
iteratively propagating messages along graph edges and reasoning the categories of graph nodes. In order to roundly
evaluate our proposed method as well as boost the future research, we release a new dataset named WildReceipt, which
is collected and annotated tailored for the evaluation of key information extraction from document images of unseen
templates in the wild. It contains 25 key information categories, a total of about 69000 text boxes, and is about 2 times
larger than the existing public datasets. Extensive experiments validate that all information including visual features,
textual features and spatial relations can benefit key information extraction. It has been shown that SDMG-R can
effectively extract key information from document images of unseen templates, and obtain new state-of-the-art results
on the recent popular benchmark SROIE and our WildReceipt. Our code and dataset will be publicly released.

16.1.2 Results and models

WildReceipt

Note:

1. For sdmgr_novisual, images are not needed for training and testing. So fake img_prefix can be used in
configs. As well, fake file_name can be used in annotation files.
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WildReceiptOpenset

Note:
1.

In the case of openset, the number of node categories is unknown or unfixed, and more node category can be
added.

To show that our method can handle openset problem, we modify the ground truth of WildReceipt to
WildReceiptOpenset. The nodes are just classified into 4 classes: background, key, value, others,
while adding edge labels for each box.

The model is used to predict whether two nodes are a pair connecting by a valid edge.

You can learn more about the key differences between CloseSet and OpenSet annotations in our tuforial.

16.1.3 Citation
@misc{sun2021lspatial,
title={Spatial Dual-Modality Graph Reasoning for Key Information Extraction},
author={Hongbin Sun and Zhanghui Kuang and Xiaoyu Yue and Chenhao Lin and Wayne.
—Zhang},
year={2021},
eprint={2103.14470},
archivePrefix={arXiv},
primaryClass={cs.CV}
3
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CHAPTER
SEVENTEEN

NAMED ENTITY RECOGNITION MODELS

17.1 Bert

Bert: Pre-training of deep bidirectional transformers for language understanding

17.1.1 Abstract

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representa-
tions from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirec-
tional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result,
the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for
a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture
modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven
natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement),
MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point
absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

17.1.2 Dataset

Train Dataset
Test Dataset
17.1.3 Results and models

17.1.4 Citation

@article{devlin2018bert,
title={Bert: Pre-training of deep bidirectional transformers for language.
—understanding},
author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
journal={arXiv preprint arXiv:1810.04805},
year={2018}
}
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CHAPTER
EIGHTEEN

18.1

TEXT DETECTION

Overview

18.1.1 Install AWS CLI (optional)

* Since there are some datasets that require the AWS CLI to be installed in advance, we provide a quick installation
guide here:

curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip"
unzip awscliv2.zip

sudo ./aws/install

./aws/install -i /usr/local/aws-cli -b /usr/local/bin

laws configure

# this command will require you to input keys, you can skip them except
# for the Default region name

# AWS Access Key ID [None]:

# AWS Secret Access Key [None]:

# Default region name [None]: us-east-1

# Default output format [None]

18.2

Important Note

Note: For users who want to train models on CTW1500, ICDAR 2015/2017, and Totaltext dataset, there might be
some images containing orientation info in EXIF data. The default OpenCV backend used in MMCV would read them
and apply the rotation on the images. However, their gold annotations are made on the raw pixels, and such inconsis-
tency results in false examples in the training set. Therefore, users should use dict (type="'LoadImageFromFile',
color_type="'color_ignore_orientation') in pipelines to change MMCV’s default loading behaviour. (see DB-
Net’s pipeline config for example)
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18.3 CTW1500

Step0: Read Important Note

Stepl: Download train_images.zip, test_images.zip, train_labels.zip, test_labels.zip from
github

mkdir ctwl500 && cd ctwl500
mkdir imgs && mkdir annotations

# For annotations

cd annotations

wget -0 train_labels.zip https://universityofadelaide.box.com/shared/static/
< jikuazluzyj4lgbumzei7m2ppmt3afyw.zip

wget -0 test_labels.zip https://cloudstor.aarnet.edu.au/plus/s/uoeF10pCNI9BOCNS5/
—.download

unzip train_labels.zip && mv ctwl500_train_labels training

unzip test_labels.zip -d test

cd ..

# For images

cd imgs

wget -0 train_images.zip https://universityofadelaide.box.com/shared/static/
—pySuwlfyyytbb2pxzq9czvu6fugbjdh8.zip

wget -0 test_images.zip https://universityofadelaide.box.com/shared/static/
—t4w48o0fngkdw7 jyc4tllnsukoeqk9c3d.zip

unzip train_images.zip && mv train_images training

unzip test_images.zip && mv test_images test

Step2: Generate instances_training. json and instances_test. json with following command:

python tools/data/textdet/ctwl500_converter.py /path/to/ctwl500 -o /path/to/ctwl500.
—--split-list training test

The resulting directory structure looks like the following:

ctwl500
imgs
annotations
instances_training. json
instances_val. json

18.4 ICDAR 2011 (Born-Digital Images)

Stepl: Download Challengel_Training_Taskl2_Images.zip, Challengel _Training_Taskl_GT.zip,
Challengel_Test_Taskl2_Images.zip, and Challengel _Test_Taskl_GT.zip from homepage Task 1.
1: Text Localization (2013 edition).

mkdir icdar2011 && cd icdar2011
mkdir imgs && mkdir annotations

# Download ICDAR 2011
wget https://rrc.cvc.uab.es/downloads/Challengel_Training_Taskl2_Images.zip --no-

—check-certificate (continues on next page)
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(continued from previous page)

wget https://rrc.cvc.uab.es/downloads/Challengel_Training_Taskl GT.zip --no-check-
—certificate

wget https://rrc.cvc.uab.es/downloads/Challengel_Test_Taskl2_Images.zip --no-check-
—certificate

wget https://rrc.cvc.uab.es/downloads/Challengel_Test_Taskl_GT.zip --no-check-
—.certificate

# For images

unzip -q Challengel_Training Taskl2_Images.zip -d imgs/training
unzip -q Challengel_Test_Taskl2_Images.zip -d imgs/test

# For annotations

unzip -q Challengel_Training_Taskl_GT.zip -d annotations/training
unzip -q Challengel_Test_Taskl _GT.zip -d annotations/test

rm Challengel_Training_Taskl2_Images.zip && rm Challengel Test_Taskl2_Images.zip &&.
—rm Challengel_Training Taskl_GT.zip &% rm Challengel_Test_Taskl_GT.zip

Step 2: Generate instances_training. json and instances_test. json with the following command:

python tools/data/textdet/icll_converter.py PATH/TO/icdar2011 --nproc 4

After running the above codes, the directory structure should be as follows:

— icdar2011

imgs
instances_test.json

instances_training. json

18.5 ICDAR 2013 (Focused Scene Text)

Stepl: Download Challenge2_Training Taskl2_Images.zip, Challenge2_Test_Taskl2_Images.
zip, Challenge2_Training_Taskl_GT.zip, and Challenge2_Test_Taskl_GT.zip from homepage Task
2.1: Text Localization (2013 edition).

mkdir icdar2013 && cd icdar2013
mkdir imgs && mkdir annotations

# Download ICDAR 2013

wget https://rrc.cvc.uab.es/downloads/Challenge2_Training_Task12_Images.zip --no-
—check-certificate

wget https://rrc.cvc.uab.es/downloads/Challenge2_Test_Taskl2_Images.zip --no-check-
—certificate

wget https://rrc.cvc.uab.es/downloads/Challenge2_Training_Taskl _GT.zip --no-check-
—certificate

wget https://rrc.cvc.uab.es/downloads/Challenge2_Test_Taskl_GT.zip --no-check-
—certificate

# For images
unzip -q Challenge2_Training Taskl2_Images.zip -d imgs/training
unzip -q Challenge2_Test_Taskl2_Images.zip -d imgs/test

(continues on next page)

18.5.

ICDAR 2013 (Focused Scene Text) 91



https://rrc.cvc.uab.es/?ch=2&com=downloads

MMOCR, Release 0.6.3

(continued from previous page)

# For annotations
unzip -q Challenge2_Training_Taskl_GT.zip -d annotations/training
unzip -q Challenge2_Test_Taskl _GT.zip -d annotations/test

rm Challenge2_Training_Taskl2_Images.zip && rm Challenge2_Test_Taskl2_Images.zip &&.
—rm Challenge2_Training Taskl_GT.zip &% rm Challenge2_Test_Taskl_GT.zip

Step 2: Generate instances_training. json and instances_test. json with the following command:

python tools/data/textdet/icl3_converter.py PATH/TO/icdar2013 --nproc 4

After running the above codes, the directory structure should be as follows:

— icdar2013

imgs
instances_test.json

instances_training. json

18.6 ICDAR 2015

» Step0: Read Important Note

» Stepl: Download ch4_training_images.zip, ch4_test_images.zip,
ch4_training_localization_transcription_gt.zip, Challenge4_Test_Task1l_GT.zip from
homepage

* Step2:

mkdir icdar2015 && cd icdar2015

mkdir imgs && mkdir annotations

# For images,

mv ch4_training images imgs/training

mv ch4_test_images imgs/test

# For annotations,

mv ch4_training localization_transcription_gt annotations/training
mv Challenge4_Test_Taskl_GT annotations/test

» Step3: Download instances_training.json and instances_test.json and move them to icdar2015

* Or, generate instances_training. json and instances_test. json with the following command:

python tools/data/textdet/icdar_converter.py /path/to/icdar2015 -o /path/to/
—icdar2015 -d icdar2015 --split-list training test

* The resulting directory structure looks like the following:

icdar2015
imgs
annotations
instances_test.json
instances_training. json
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18.7 ICDAR 2017

* Follow similar steps as /CDAR 2015.

* The resulting directory structure looks like the following:

icdar2017
imgs
annotations
instances_training. json
instances_val. json

18.8 SynthText

» Stepl: Download SynthText.zip from [homepage](https://www.robots.ox.ac.uk/~vgg/data/scenetext/ and extract
its content to synthtext/img.

 Step2: Download data.mdb and lock.mdb to synthtext/instances_training.lmdb/.

* The resulting directory structure looks like the following:

synthtext

|: imgs
instances_training.lmdb
data.mdb
lock.mdb

18.9 TextOCR

» Stepl: Download train_val_images.zip, TextOCR_0.1_train.json and TextOCR_0.1_val.json to textocr/.

mkdir textocr && cd textocr

# Download TextOCR dataset

wget https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip

wget https://dl.fbaipublicfiles.com/textvga/data/textocr/TextOCR_0.1_train.json
wget https://dl.fbaipublicfiles.com/textvga/data/textocr/TextOCR_0.1_val.json

# For images
unzip -q train_val_images.zip
mv train_images train

» Step2: Generate instances_training. json and instances_val. json with the following command:

python tools/data/textdet/textocr_converter.py /path/to/textocr

The resulting directory structure looks like the following:

textocr
— train

(continues on next page)
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t:: instances_training. json
instances_val. json

18.10 Totaltext

 Step0: Read Important Note

e Stepl: Download totaltext.zip from github dataset and groundtruth_text.zip or TT_new_train_GT.
zip (if you prefer to use the latest version of training annotations) from github Groundtruth (Our total-
text_converter.py supports groundtruth with both .mat and .txt format).

mkdir totaltext && cd totaltext
mkdir imgs && mkdir annotations

# For images

# in ./totaltext

unzip totaltext.zip

mv Images/Train imgs/training
mv Images/Test imgs/test

# For legacy training and test annotations

unzip groundtruth_text.zip

mv Groundtruth/Polygon/Train annotations/training
mv Groundtruth/Polygon/Test annotations/test

# Using the latest training annotations

# WARNING: Delete legacy train annotations before running the following command.
unzip TT_new_train_GT.zip

mv Train annotations/training

» Step2: Generate instances_training. json and instances_test. json with the following command:

python tools/data/textdet/totaltext_converter.py /path/to/totaltext

* The resulting directory structure looks like the following:

totaltext
imgs
annotations
instances_test.json
instances_training. json
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18.11 CurvedSynText150k

» Stepl: Download syntextl.zip and syntext2.zip to CurvedSynText150k/.
* Step2:

unzip -q syntextl.zip

mv train.json trainl.json
unzip images.zip

rm images.zip

unzip -q syntext2.zip

mv train.json train2.json
unzip images.zip

rm images.zip

 Step3: Download instances_training.json to CurvedSynText150k/

* Or, generate instances_training. json with following command:

python tools/data/common/curvedsyntext_converter.py PATH/TO/CurvedSynText150k --
—nproc 4

* The resulting directory structure looks like the following:

CurvedSynText 150k
syntext_word_eng

E emcs_imgs
instances_training. json

18.12 FUNSD

 Stepl: Download dataset.zip to funsd/.

mkdir funsd && cd funsd

# Download FUNSD dataset
wget https://guillaumejaume.github.io/FUNSD/dataset.zip
unzip -q dataset.zip

# For images
mv dataset/training_data/images imgs && mv dataset/testing_data/images/* imgs/

# For annotations

mkdir annotations

mv dataset/training_data/annotations annotations/training && mv dataset/testing_
—data/annotations annotations/test

rm dataset.zip & rm -rf dataset

» Step2: Generate instances_training. json and instances_test. json with following command:
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python tools/data/textdet/funsd_converter.py PATH/TO/funsd --nproc 4

* The resulting directory structure looks like the following:

— funsd
annotations
imgs
instances_test.json
instances_training. json

18.13 DeText

e Stepl: Download ch9_training_images.zip, ch9_training_localization_transcription_gt.zip,
ch9_validation_images.zip, and ch9_validation_localization_transcription_gt.zip from
Task 3: End to End on the homepage.

mkdir detext && cd detext
mkdir imgs && mkdir annotations && mkdir imgs/training && mkdir imgs/val && mkdir.
—.annotations/training && mkdir annotations/val

# Download DeText

wget https://rrc.cvc.uab.es/downloads/ch9_training images.zip --no-check-certificate
wget https://rrc.cvc.uab.es/downloads/ch9_training localization_transcription_gt.
—zip --no-check-certificate

wget https://rrc.cvc.uab.es/downloads/ch9_validation_images.zip --no-check-
—certificate

wget https://rrc.cvc.uab.es/downloads/ch9_validation_localization_transcription_gt.
—.zip --no-check-certificate

# Extract images and annotations

unzip -q ch9_training_images.zip -d imgs/training && unzip -q ch9_training_

—.localization_transcription_gt.zip -d annotations/training && unzip -q ch9_
—validation_images.zip -d imgs/val && unzip -q ch9_validation_localization_
—transcription_gt.zip -d annotations/val

# Remove zips

rm ch9_training_images.zip && rm ch9_training localization_transcription_gt.zip &&.
—rm ch9_validation_images.zip & rm ch9_validation_localization_transcription_gt.
—2zip

» Step2: Generate instances_training. json and instances_val. json with following command:

python tools/data/textdet/detext_converter.py PATH/TO/detext --nproc 4

 After running the above codes, the directory structure should be as follows:

— detext
annotations
imgs
instances_test.json
instances_training. json
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18.14 NAF

e Stepl: Download labeled_images.tar.gz to naf/.

mkdir naf & cd naf

# Download NAF dataset

wget https://github.com/herobd/NAF_dataset/releases/download/v1.0/labeled_images.
—tar.gz

tar -zxf labeled_images.tar.gz

# For images
mkdir annotations && mv labeled_images imgs

# For annotations

git clone https://github.com/herobd/NAF_dataset.git

mv NAF_dataset/train_valid_test_split.json annotations/ && mv NAF_dataset/groups..
—annotations/

rm -rf NAF_dataset &% rm labeled_images.tar.gz

» Step2: Generate instances_training. json, instances_val. json, and instances_test. json with fol-
lowing command:

python tools/data/textdet/naf_converter.py PATH/TO/naf --nproc 4

 After running the above codes, the directory structure should be as follows:

— naf
annotations
imgs
instances_test.json
instances_val. json
instances_training. json

18.15 SROIE

e Stepl: Download 0325updated.taskltrain(626p).zip, taskl&2_test(361p).zip, and text.
taskl&2-test361p).zip from homepage to sroie/

* Step2:

mkdir sroie && cd sroie
mkdir imgs && mkdir annotations && mkdir imgs/training

# Warnninig: The zip files downloaded from Google Drive and BaiduYun Cloud may

# be different, the user should revise the following commands to the correct

# file name if encounter with errors while extracting and move the files.

unzip -q 0325updated.taskltrain\(626p\).zip && unzip -q task1\&2_test\(361p\).zip &&
< unzip -q text.taskl\&2-test361p\).zip

# For images

(continues on next page)
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mv 0325updated.taskltrain\(626p\)/*.jpg imgs/training && mv fulltext_test\(361p\).
—.imgs/test

# For annotations
mv 0325updated.taskltrain\(626p\) annotations/training && mv text.taskl\&2-test361p\
—)/ annotations/test

rm 0325updated.taskltrain\(626p\).zip & & rm taskl\&2_test\(361p\).zip && rm text.
—taskl\&2-test361p\).zip

Step3: Generate instances_training. json and instances_test. json with the following command:

python tools/data/textdet/sroie_converter.py PATH/TO/sroie --nproc 4

After running the above codes, the directory structure should be as follows:

sroie
annotations
imgs
instances_test.json
instances_training. json

18.16 Lecture Video DB

Stepl: Download IIIT-CVid.zip to 1v/.

mkdir 1lv && cd 1lv

# Download LV dataset

wget http://cdn.iiit.ac.in/cdn/preon.iiit.ac.in/~kartik/IIIT-CVid.zip
unzip -q IIIT-CVid.zip

mv IIIT-CVid/Frames imgs

rm ITIT-CVid.zip

Step2: Generate instances_training. json, instances_val. json, and instances_test. json with fol-
lowing command:

python tools/data/textdet/lv_converter.py PATH/TO/lv --nproc 4

The resulting directory structure looks like the following:

— 1v
imgs
instances_test.json
instances_training. json
instances_val. json
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18.17 LSVT

Stepl: Download train_full_images_0.tar.gz, train_full_images_1.tar.gz, and train_full_labels.json to 1svt/.

mkdir 1svt && cd 1lsvt

# Download LSVT dataset

wget https://dataset-bj.cdn.bcebos.com/lsvt/train_full_images_0.tar.gz
wget https://dataset-bj.cdn.bcebos.com/lsvt/train_full_images_1.tar.gz
wget https://dataset-bj.cdn.bcebos.com/lsvt/train_full_labels.json

mkdir annotations

tar -xf train_full_images_0.tar.gz &% tar -xf train_full_images_1l.tar.gz

mv train_full_labels.json annotations/ && mv train_full_images_1/*.jpg train_full_
—.images_0/

mv train_full_images_0 imgs

rm train_full_images_0.tar.gz && rm train_full_images_1.tar.gz &% rm -rf train_full_
—»images_1

Step2: Generate instances_training. json and instances_val. json (optional) with the following com-
mand:

# Annotations of LSVT test split is not publicly available, split a validation
# set by adding --val-ratio 0.2
python tools/data/textdet/lsvt_converter.py PATH/TO/lsvt

After running the above codes, the directory structure should be as follows:

|— 1lsvt

imgs
instances_training. json

instances_val.json (optional)

18.18 IMGUR

Stepl: Run download_imgur5k.py to download images. You can merge PR#5 in your local repository to
enable a much faster parallel execution of image download.

mkdir imgur && cd imgur

git clone https://github.com/facebookresearch/IMGUR5SK-Handwriting-Dataset.git
# Download images from imgur.com. This may take SEVERAL HOURS!

python ./IMGUR5K-Handwriting-Dataset/download_imgur5k.py --dataset_info_dir ./
. IMGUR5K-Handwriting-Dataset/dataset_info/ --output_dir ./imgs

# For annotations

mkdir annotations

mv ./IMGUR5K-Handwriting-Dataset/dataset_info/*.json annotations

rm -rf IMGUR5K-Handwriting-Dataset
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e Step2: Generate instances_train.json, instance_val.json and instances_test. json with the fol-
lowing command:

python tools/data/textdet/imgur_converter.py PATH/TO/imgur

After running the above codes, the directory structure should be as follows:

— imgur
annotations
imgs
instances_test.json
instances_training. json
instances_val. json

18.19 KAIST

¢ Stepl: Complete download KAIST _all.zip to kaist/.

mkdir kaist && cd kaist
mkdir imgs && mkdir annotations

# Download KAIST dataset
wget http://www.iapr-tcll.org/dataset/KAIST_SceneText/KAIST_all.zip
unzip -q KAIST_all.zip

rm KAIST_ all.zip

 Step2: Extract zips:

python tools/data/common/extract_kaist.py PATH/TO/kaist

e Step3: Generate instances_training. jsonand instances_val. json (optional) with following command:

# Since KAIST does not provide an official split, you can split the dataset by.
—adding --val-ratio 0.2
python tools/data/textdet/kaist_converter.py PATH/TO/kaist --nproc 4

 After running the above codes, the directory structure should be as follows:

— kaist
annotations
imgs
instances_training. json
instances_val. json (optional)
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18.20 MTWI

e Stepl: Download mtwi_2018_train.zip from homepage.

mkdir mtwi && cd mtwi

unzip -q mtwi_2018_train.zip
mv image_train imgs && mv txt_train annotations

rm mtwi_2018_train.zip

» Step2: Generate instances_training. json and instance_val. json (optional) with the following com-
mand:

# Annotations of MTWI test split is not publicly available, split a validation
# set by adding --val-ratio 0.2
python tools/data/textdet/mtwi_converter.py PATH/TO/mtwi --nproc 4

 After running the above codes, the directory structure should be as follows:

— mtwi
annotations
imgs
instances_training. json
instances_val.json (optional)

18.21 COCO Text v2

» Stepl: Download image train2014.zip and annotation cocotext.v2.zip to coco_textv2/.

mkdir coco_textv2 && cd coco_textv2
mkdir annotations

# Download COCO Text v2 dataset

wget http://images.cocodataset.org/zips/train2014.zip

wget https://github.com/bgshih/cocotext/releases/download/dl/cocotext.v2.zip
unzip -q train2014.zip && unzip -q cocotext.v2.zip

mv train2014 imgs && mv cocotext.v2.json annotations/

rm train2014.zip & rm -rf cocotext.v2.zip

» Step2: Generate instances_training. json and instances_val. json with the following command:

python tools/data/textdet/cocotext_converter.py PATH/TO/coco_textv2

* After running the above codes, the directory structure should be as follows:

— coco_textv2

annotations
imgs

(continues on next page)
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instances_val. json

‘ t:: instances_training. json

.22 ReCTS

e Stepl: Download ReCTS.zip to rects/ from the homepage.

mkdir rects && cd rects

# Download ReCTS dataset

# You can also find Google Drive link on the dataset homepage

wget https://datasets.cvc.uab.es/rrc/ReCTS.zip --no-check-certificate
unzip -q ReCTS.zip

mv img imgs && mv gt_unicode annotations

rm ReCTS.zip && rm -rf gt

» Step2: Generate instances_training. jsonand instances_val. json (optional) with following command:

# Annotations of ReCTS test split is not publicly available, split a validation
# set by adding --val-ratio 0.2
python tools/data/textdet/rects_converter.py PATH/TO/rects --nproc 4 --val-ratio 0.2

» After running the above codes, the directory structure should be as follows:

— rects
annotations
imgs
instances_val. json (optional)
instances_training. json

.23 ILST

 Stepl: Download ITIT-ILST from onedrive

¢ Step2: Run the following commands

unzip -q ITIT-ILST.zip && rm IIIT-ILST.zip
cd IIIT-ILST

# rename files

cd Devanagari && for i in "1s'; do mv -f $i “echo "devanagari_"$i"; done && cd ..
cd Malayalam && for i in "1s'; do mv -f $i “echo "malayalam_"$i"; done && cd ..
cd Telugu & for i in "1s'; do mv -f $i “echo "telugu_"$i"; done && cd ..

# transfer image path
mkdir imgs && mkdir annotations
mv Malayalam/{*jpg,*jpeg} imgs/ & & mv Malayalam/*xml annotations/

(continues on next page)
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mv Devanagari/*jpg imgs/ && mv Devanagari/*xml annotations/
mv Telugu/*jpeg imgs/ && mv Telugu/*xml annotations/

# remove unnecessary files
rm -rf Devanagari && rm -rf Malayalam & rm -rf Telugu && rm -rf README.txt

» Step3: Generate instances_training. jsonand instances_val. json (optional). Since the original dataset
doesn’t have a validation set, you may specify --val-ratio to split the dataset. E.g., if val-ratio is 0.2, then
20% of the data are left out as the validation set in this example.

python tools/data/textdet/ilst_converter.py PATH/TO/IIIT-ILST --nproc 4

 After running the above codes, the directory structure should be as follows:

— IIIT-ILST
annotations
imgs
instances_val. json (optional)
instances_training. json

18.24 VinText

 Stepl: Download vintext.zip to vintext

mkdir vintext && cd vintext

# Download dataset from google drive

wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&
—confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --
—no-check-certificate 'https://docs.google.com/uc?export=download&
<+1d=1UUQhNvzgpZy7zXBFQp0®Qox-BBjunZOml' -0- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).
—*/\1\n/p')&id=1UUQhNvzgpZy7zXBFQp®Qox-BBjunZOml" -0 vintext.zip & rm -rf /tmp/
—,cookies.txt

# Extract images and annotations

unzip -q vintext.zip && rm vintext.zip

mv vietnamese/labels ./ & & mv vietnamese/test_image ./ && mv vietnamese/train_
—images ./ & & mv vietnamese/unseen_test_images ./

rm -rf vietnamese

# Rename files

mv labels annotations && mv test_image test && mv train_images training && mv.
—unseen_test_images unseen_test

mkdir imgs

mv training imgs/ && mv test imgs/ &% mv unseen_test imgs/

* Step2: Generate instances_training.json, instances_test.json and instances_unseen_test.
json

python tools/data/textdet/vintext_converter.py PATH/TO/vintext --nproc 4

18.24. VinText 103


https://drive.google.com/drive/my-drive

MMOCR, Release 0.6.3

* After running the above codes, the directory structure should be as follows:

— vintext
annotations
imgs
instances_test.json
instances_unseen_test.json
instances_training. json

18.25 BID

* Stepl: Download BID Dataset.zip

 Step2: Run the following commands to preprocess the dataset

# Rename
mv BID\ Dataset.zip BID_Dataset.zip

# Unzip and Rename
unzip -q BID_Dataset.zip &% rm BID_Dataset.zip
mv BID\ Dataset BID

# The BID dataset has a problem of permission, and you may
# add permission for this file

chmod -R 777 BID

cd BID

mkdir imgs && mkdir annotations

# For images and annotations

mv CNH_Aberta/*in.jpg imgs && mv CNH_Aberta/*txt annotations &% rm -rf CNH_Aberta
mv CNH_Frente/*in.jpg imgs & & mv CNH_Frente/*txt annotations & & rm -rf CNH_Frente
mv CNH_Verso/*in.jpg imgs && mv CNH_Verso/*txt annotations && rm -rf CNH_Verso

mv CPF_Frente/*in.jpg imgs & mv CPF_Frente/*txt annotations &% rm -rf CPF_Frente
mv CPF_Verso/*in.jpg imgs & & mv CPF_Verso/*txt annotations && rm -rf CPF_Verso

mv RG_Aberto/*in.jpg imgs && mv RG_Aberto/*txt annotations && rm -rf RG_Aberto

mv RG_Frente/*in.jpg imgs & & mv RG_Frente/*txt annotations &% rm -rf RG_Frente

mv RG_Verso/*in.jpg imgs && mv RG_Verso/*txt annotations && rm -rf RG_Verso

# Remove unnecessary files
rm -rf desktop.ini

» Step3: - Step3: Generate instances_training. json and instances_val. json (optional). Since the orig-
inal dataset doesn’t have a validation set, you may specify --val-ratio to split the dataset. E.g., if val-ratio is
0.2, then 20% of the data are left out as the validation set in this example.

python tools/data/textdet/bid_converter.py PATH/TO/BID --nproc 4

¢ After running the above codes, the directory structure should be as follows:

— BID

annotations
imgs

(continues on next page)
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instances_val.json (optional)

‘ |: instances_training. json

18.26 RCTW

e Stepl: Download train_images.zip.001, train_images.zip.002, and train_gts.zip from the home-
page, extract the zips to rctw/imgs and rctw/annotations, respectively.

» Step2: Generate instances_training. json and instances_val. json (optional). Since the test annota-
tions are not publicly available, you may specify --val-ratio to split the dataset. E.g., if val-ratio is 0.2, then
20% of the data are left out as the validation set in this example.

# Annotations of RCTW test split is not publicly available, split a validation set.
—by adding --val-ratio 0.2
python tools/data/textdet/rctw_converter.py PATH/TO/rctw --nproc 4

 After running the above codes, the directory structure should be as follows:

— rctw
annotations
imgs
instances_training. json
instances_val. json (optional)

18.27 HierText

 Stepl (optional): Install AWS CLI.

» Step2: Clone HierText repo to get annotations

mkdir HierText
git clone https://github.com/google-research-datasets/hiertext.git

e Step3: Download train.tgz, validation. tgz from aws

aws s3 --no-sign-request cp s3://open-images-dataset/ocr/train.tgz .
aws s3 --no-sign-request cp s3://open-images-dataset/ocr/validation.tgz .

 Step4: Process raw data

# process annotations

mv hiertext/gt ./

rm -rf hiertext

mv gt annotations

gzip -d annotations/train.jsonl.gz

gzip -d annotations/validation.jsonl.gz
# process images

mkdir imgs

mv train.tgz imgs/

mv validation.tgz imgs/

(continues on next page)
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tar -xzvf imgs/train.tgz
tar -xzvf imgs/validation.tgz

StepS5: Generate instances_training. json and instance_val. json. HierText includes different levels of
annotation, from paragraph, line, to word. Check the original paper for details. E.g. set --level paragraph
to get paragraph-level annotation. Set --level line to get line-level annotation. set --level word to get
word-level annotation.

# Collect word annotation from HierText --level word
python tools/data/textdet/hiertext_converter.py PATH/TO/HierText --level word --
—nproc 4

After running the above codes, the directory structure should be as follows:

— HierText
annotations
imgs
instances_training. json
instances_val. json

18.28 ArT

Stepl: Download train_images.tar.gz, and train_labels. json from the homepage to art/

mkdir art & cd art
mkdir annotations

# Download ArT dataset

wget https://dataset-bj.cdn.bcebos.com/art/train_images.tar.gz --no-check-
—certificate

wget https://dataset-bj.cdn.bcebos.com/art/train_labels.json --no-check-certificate

# Extract

tar -xf train_images.tar.gz

mv train_images imgs

mv train_labels.json annotations/

# Remove unnecessary files
rm train_images.tar.gz

Step2: Generate instances_training. json and instances_val. json (optional). Since the test annota-
tions are not publicly available, you may specify --val-ratio to split the dataset. E.g., if val-ratio is 0.2, then
20% of the data are left out as the validation set in this example.

# Annotations of ArT test split is not publicly available, split a validation set.
by adding --val-ratio 0.2
python tools/data/textdet/art_converter.py PATH/TO/art --nproc 4

After running the above codes, the directory structure should be as follows:
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— art
annotations
imgs
instances_training. json
instances_val. json (optional)
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CHAPTER
NINETEEN

TEXT RECOGNITION

19.1 Overview

(*) Since the official homepage is unavailable now, we provide an alternative for quick reference. However, we do not
guarantee the correctness of the dataset.

19.1.1 Install AWS CLI (optional)

* Since there are some datasets that require the AWS CLI to be installed in advance, we provide a quick installation
guide here:

curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip"
unzip awscliv2.zip

sudo ./aws/install

./aws/install -i /usr/local/aws-cli -b /usr/local/bin

laws configure

# this command will require you to input keys, you can skip them except
# for the Default region name

# AWS Access Key ID [None]:

# AWS Secret Access Key [None]:

# Default region name [None]: us-east-1

# Default output format [None]

19.2 ICDAR 2011 (Born-Digital Images)

e Stepl: Download Challengel_Training_Task3_Images_GT.zip, Challengel_Test_Task3_Images.
zip, and Challengel_Test_Task3_GT.txt from homepage Task 1.3: Word Recognition (2013
edition).

mkdir icdar2011 && cd icdar2011
mkdir annotations

# Download ICDAR 2011

wget https://rrc.cvc.uab.es/downloads/Challengel_Training_Task3_Images_GT.zip --no-
—.check-certificate

wget https://rrc.cvc.uab.es/downloads/Challengel_Test_Task3_Images.zip --no-check-

—certificate
wget https://rrc.cvc.uab.es/downloads/Challengel_Test_Task3_GT.txt --no-check-
—certificate (continues on next page)
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# For images

mkdir crops

unzip -q Challengel_Training_Task3_Images_GT.zip -d crops/train
unzip -q Challengel_Test_Task3_Images.zip -d crops/test

# For annotations
mv Challengel_Test_Task3_GT.txt annotations && mv train/gt.txt annotations/
—Challengel_Train_Task3_GT.txt

Step2: Convert original annotations to Train_label. jsonl and Test_label. jsonl with the following com-
mand:

python tools/data/textrecog/icll_converter.py PATH/TO/icdar2011

After running the above codes, the directory structure should be as follows:

icdar2011
crops

E train_label. jsonl
test_label. jsonl

19.3 ICDAR 2013 (Focused Scene Text)

Stepl: Download Challenge2_Training_Task3_Images_GT.zip, Challenge2_Test_Task3_Images.
zip, and Challenge2_Test_Task3_GT.txt from homepage Task 2.3: Word Recognition (2013
edition).

mkdir icdar2013 && cd icdar2013
mkdir annotations

# Download ICDAR 2013

wget https://rrc.cvc.uab.es/downloads/Challenge2_Training_Task3_Images_GT.zip --no-
—.check-certificate

wget https://rrc.cvc.uab.es/downloads/Challenge2_Test_Task3_Images.zip --no-check-
—certificate

wget https://rrc.cvc.uab.es/downloads/Challenge2_Test_Task3_GT.txt --no-check-
—certificate

# For images

mkdir crops

unzip -q Challenge2_Training Task3_Images_GT.zip -d crops/train

unzip -q Challenge2_Test_Task3_Images.zip -d crops/test

# For annotations

mv Challenge2_Test_Task3_GT.txt annotations &% mv crops/train/gt.txt annotations/
—Challenge2_Train_Task3_GT.txt

rm Challenge2_Training_Task3_Images_GT.zip && rm Challenge2_Test_Task3_Images.zip

Step 2: Generate Train_label. jsonl and Test_label. jsonl with the following command:
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python tools/data/textrecog/icl3_converter.py PATH/TO/icdar2013

 After running the above codes, the directory structure should be as follows:

icdar2013
crops

E train_label. jsonl
test_label. jsonl

19.4 ICDAR 2013 [Deprecated]

» Stepl: Download Challenge2_Test_Task3_Images.zipand Challenge2_Training_Task3_Images_GT.
zip from homepage

 Step2: Download test_label 1015.txt and train_label.txt

 After running the above codes, the directory structure should be as follows:

— icdar_2013
train_label.txt
test_label_1015.txt
test_label _1095.txt
Challenge2_Training_Task3_Images_GT
Challenge2_Test_Task3_Images

19.5 ICDAR 2015

e Stepl: Download ch4_training_word_images_gt.zip and ch4_test_word_images_gt.zip from home-
page
* Step2: Download train_label.txt and test_label.txt

 After running the above codes, the directory structure should be as follows:

icdar_2015
train_label.txt
test_label.txt
ch4_training_word_images_gt
ch4_test_word_images_gt

19.6 llITSK

e Stepl: Download ITIT5K-Word_V3.0.tar.gz from homepage
» Step2: Download train_label.txt and test_label.txt

 After running the above codes, the directory structure should be as follows:
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III5K
train_label.txt
test_label.txt
train
test

19.7 svt

e Stepl: Download svt.zip form homepage
» Step2: Download test_label.txt

 Step3:

python tools/data/textrecog/svt_converter.py <download_svt_dir_path>

After running the above codes, the directory structure should be as follows:

svt
|: test_label.txt
image

19.8 ct80

» Stepl: Download test_label.txt
* Step2: Download timage.tar.gz

 Step3:

mkdir ct80 && cd ct80

mv /path/to/test_label.txt .
mv /path/to/timage.tar.gz .
tar -xvf timage.tar.gz

# create soft link

cd /path/to/mmocr/data/mixture
In -s /path/to/ct80 ct80

* After running the above codes, the directory structure should be as follows:

ct80
|: test_label.txt
timage
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19

19

9 svip

» Stepl: Download test_label.txt

 After running the above codes, the directory structure should be as follows:

svtp
|: test_label.txt
image

.10 coco_text

 Stepl: Download from homepage
» Step2: Download train_label.txt

» After running the above codes, the directory structure should be as follows:

coco_text
|: train_label.txt
train_words

.11 MJSynth (Syn90k)

e Stepl: Download mjsynth. tar.gz from homepage

 Step2: Download label.txt (8,919,273 annotations) and shuffle_labels.txt (2,400,000 randomly sampled annota-
tions).

Note: Please make sure you're using the right annotation to train the model by checking its dataset specs in Model
Zoo.

* Step3:

mkdir Syn90k && cd Syn90k
mv /path/to/mjsynth.tar.gz .
tar -xzf mjsynth.tar.gz

mv /path/to/shuffle_labels.txt .
mv /path/to/label.txt .

# create soft link
cd /path/to/mmocr/data/mixture

In -s /path/to/Syn90k Syn90k

# Convert 'txt' format annos to 'Imdb' (optional)

(continues on next page)
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cd /path/to/mmocr
python tools/data/utils/lmdb_converter.py data/mixture/Syn90k/label.txt data/
—mixture/Syn90k/label.lmdb --label-only

After running the above codes, the directory structure should be as follows:

Syn90k
shuffle_labels.txt
label. txt
label.lmdb (optional)
mnt

.12 SynthText (Synth800k)

e Stepl: Download SynthText.zip from homepage

» Step2: According to your actual needs, download the most appropriate one from the following options: label.txt
(7,266,686 annotations), shuffle_labels.txt (2,400,000 randomly sampled annotations), alphanumeric_labels.txt
(7,239,272 annotations with alphanumeric characters only) and instances_train.txt (7,266,686 character-level
annotations).

Warning: Please make sure you’re using the right annotation to train the model by checking its dataset specs in
Model Zoo.

» Step3:

mkdir SynthText && cd SynthText
mv /path/to/SynthText.zip .
unzip SynthText.zip

mv SynthText synthtext

mv /path/to/shuffle_labels.txt .

mv /path/to/label.txt .

mv /path/to/alphanumeric_labels.txt .
mv /path/to/instances_train.txt .

# create soft link
cd /path/to/mmocr/data/mixture
In -s /path/to/SynthText SynthText

¢ Step4: Generate cropped images and labels:

cd /path/to/mmocr

python tools/data/textrecog/synthtext_converter.py data/mixture/SynthText/gt.mat.
—.data/mixture/SynthText/ data/mixture/SynthText/synthtext/SynthText_patch_
—horizontal --n_proc 8

# Convert 'txt' format annos to 'Imdb' (optional)

(continues on next page)
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cd /path/to/mmocr
python tools/data/utils/Ilmdb_converter.py data/mixture/SynthText/label.txt data/
—mixture/SynthText/label.lmdb --label-only

After running the above codes, the directory structure should be as follows:

—— SynthText
alphanumeric_labels.txt
shuffle_labels.txt
instances_train.txt
label.txt
label.lmdb (optional)
synthtext

19.13 SynthAdd

Stepl: Download SynthText_Add.zip from SynthAdd (code:627x))
Step2: Download label.txt
Step3:

mkdir SynthAdd && cd SynthAdd
mv /path/to/SynthText_Add.zip .
unzip SynthText_Add.zip

mv /path/to/label.txt .

# create soft link
cd /path/to/mmocr/data/mixture

In -s /path/to/SynthAdd SynthAdd

# Convert 'txt' format annos to 'Ilmdb' (optional)

cd /path/to/mmocr

python tools/data/utils/lmdb_converter.py data/mixture/SynthAdd/label.txt data/
—mixture/SynthAdd/label.lmdb --label-only

After running the above codes, the directory structure should be as follows:

SynthAdd
label.txt
label.lmdb (optional)

SynthText_Add

Tip:

To convert label file from txt format to 1mdb format,

python tools/data/utils/lmdb_converter.py <txt_label_path> <lmdb_label_path> --label-only
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For example,

python tools/data/utils/lmdb_converter.py data/mixture/Syn90k/label.txt data/mixture/
—Syn90k/label .1lmdb --label-only

19.14 TextOCR

Stepl: Download train_val_images.zip, TextOCR_0.1_train.json and TextOCR_0.1_val.json to textocr/.

mkdir textocr && cd textocr

# Download TextOCR dataset

wget https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip

wget https://dl.fbaipublicfiles.com/textvga/data/textocr/TextOCR_0.1_train.json
wget https://dl.fbaipublicfiles.com/textvga/data/textocr/TextOCR_0.1_val.json

# For images
unzip -q train_val_images.zip
mv train_images train

Step2: Generate train_label.txt, val_label.txt and crop images using 4 processes with the following
command:

python tools/data/textrecog/textocr_converter.py /path/to/textocr 4

After running the above codes, the directory structure should be as follows:

TextOCR
image

E train_label.txt
val_label.txt

19.15 Totaltext

Stepl: Download totaltext.zip from github dataset and groundtruth_text.zip or TT_new_train_GT.
zip (if you prefer to use the latest version of training annotations) from github Groundtruth (Our total-
text_converter.py supports groundtruth with both .mat and .txt format).

mkdir totaltext && cd totaltext
mkdir imgs && mkdir annotations

# For images

# in ./totaltext

unzip totaltext.zip

mv Images/Train imgs/training
mv Images/Test imgs/test

# For legacy training and test annotations
unzip groundtruth_text.zip

(continues on next page)
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mv Groundtruth/Polygon/Train annotations/training
mv Groundtruth/Polygon/Test annotations/test

# Using the latest training annotations

# WARNING: Delete legacy train annotations before running the following command.
unzip TT_new_train_GT.zip

mv Train annotations/training

» Step2: Generate cropped images, train_label.txt and test_label.txt with the following command (the
cropped images will be saved to data/totaltext/dst_imgs/):

python tools/data/textrecog/totaltext_converter.py /path/to/totaltext

 After running the above codes, the directory structure should be as follows:

totaltext
dst_imgs

|E train_label.txt
test_label.txt

19.16 OpenVINO

 Stepl (optional): Install AWS CLI.

e Step2: Download Open Images subsets train_1, train_2, train_5, train_£f, and validation to
openvino/

mkdir openvino && cd openvino

# Download Open Images subsets
for sin 12 5 £f; do
aws s3 --no-sign-request cp s3://open-images-dataset/tar/train_${s}.tar.gz .
done
aws s3 --no-sign-request cp s3://open-images-dataset/tar/validation.tar.gz .

# Download annotations
for sin 1 2 5 £f; do

wget https://storage.openvinotoolkit.org/repositories/openvino_training_
—.extensions/datasets/open_images_v5_text/text_spotting_openimages_v5_train_${s}.
—Jjson
done
wget https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/
—.datasets/open_images_v5_text/text_spotting_openimages_v5_validation. json

# Extract images
mkdir -p openimages_v5/val
for sin 12 5 £f; do
tar zxf train_${s}.tar.gz -C openimages_v5
done
tar zxf validation.tar.gz -C openimages_v5/val
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Step3: Generate train_{1,2,5,f}_label.txt, val_label.txt and crop images using 4 processes with the
following command:

python tools/data/textrecog/openvino_converter.py /path/to/openvino 4

After running the above codes, the directory structure should be as follows:

— OpenVINO

— image_1

— image_2

— image_5

— image_f

— image_val

— train_1_label.txt
— train_2_label.txt
— train_5_label.txt
— train_f_ label.txt
L— val_label.txt

19.17 DeText

Stepl: Download ch9_training_images.zip, ch9_training_localization_transcription_gt.zip,
ch9_validation_images.zip, and ch9_validation_localization_transcription_gt.zip from
Task 3: End to End on the homepage.

mkdir detext && cd detext
mkdir imgs && mkdir annotations && mkdir imgs/training && mkdir imgs/val && mkdir.
—.annotations/training && mkdir annotations/val

# Download DeText

wget https://rrc.cvc.uab.es/downloads/ch9_training_images.zip --no-check-certificate
wget https://rrc.cvc.uab.es/downloads/ch9_training localization_transcription_gt.
—.zip --no-check-certificate

wget https://rrc.cvc.uab.es/downloads/ch9_validation_images.zip --no-check-
—certificate

wget https://rrc.cvc.uab.es/downloads/ch9_validation_localization_transcription_gt.
—»zip --no-check-certificate

# Extract images and annotations

unzip -q ch9_training_images.zip -d imgs/training && unzip -q ch9_training_
—localization_transcription_gt.zip -d annotations/training && unzip -q ch9_
—validation_images.zip -d imgs/val && unzip -q ch9_validation_localization_
—transcription_gt.zip -d annotations/val

# Remove zips

rm ch9_training_images.zip && rm ch9_training localization_transcription_gt.zip &&.
—rm ch9_validation_images.zip && rm ch9_validation_localization_transcription_gt.
—zip

Step2: Generate instances_training. json and instances_val. json with following command:
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# Add --preserve-vertical to preserve vertical texts for training, otherwise
# vertical images will be filtered and stored in PATH/TO/detext/ignores
python tools/data/textrecog/detext_converter.py PATH/TO/detext --nproc 4

 After running the above codes, the directory structure should be as follows:

detext
crops
ignores
train_label. jsonl
test_label. jsonl

19.18 NAF

» Stepl: Download labeled_images.tar.gz to naf/.

mkdir naf && cd naf

# Download NAF dataset

wget https://github.com/herobd/NAF_dataset/releases/download/v1.0/labeled_images.
—tar.gz

tar -zxf labeled_images.tar.gz

# For images
mkdir annotations && mv labeled_images imgs

# For annotations

git clone https://github.com/herobd/NAF_dataset.git

mv NAF_dataset/train_valid_test_split.json annotations/ && mv NAF_dataset/groups..
—.annotations/

rm -rf NAF_dataset &% rm labeled_images.tar.gz

e Step2: Generate train_label.txt, val_label.txt, and test_label.txt with following command:

# Add --preserve-vertical to preserve vertical texts for training, otherwise
# vertical images will be filtered and stored in PATH/TO/naf/ignores
python tools/data/textrecog/naf_converter.py PATH/TO/naf --nproc 4

* After running the above codes, the directory structure should be as follows:

naf
crops
train_label.txt
val_label.txt
test_label.txt
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19.19 SROIE

Stepl: Stepl: Download 0325updated.taskltrain(626p).zip, task1l&2_test(361p).zip, and text.
task1l&2-test361p).zip from homepage to sroie/

Step2:

mkdir sroie && cd sroie
mkdir imgs && mkdir annotations && mkdir imgs/training

# Warnninig: The zip files downloaded from Google Drive and BaiduYun Cloud may

# be different, the user should revise the following commands to the correct

# file name if encounter with errors while extracting and move the files.

unzip -q 0325updated.taskltrain\(626p\).zip && unzip -q task1\&2_test\(361p\).zip &&
— unzip -q text.taskl\&2-test361p\).zip

# For images
mv 0325updated.taskltrain\(626p\)/*.jpg imgs/training && mv fulltext_test\(361p\).
—.imgs/test

# For annotations
mv 0325updated.taskltrain\(626p\) annotations/training && mv text.taskl\&2-test361p\
—.)/ annotations/test

rm 0325updated.taskltrain\(626p\).zip & rm taskl\&2_test\(361p\).zip && rm text.
—task1\&2-test361p\).zip

Step3: Generate train_label. jsonl and test_label. jsonl and crop images using 4 processes with the
following command:

python tools/data/textrecog/sroie_converter.py PATH/TO/sroie --nproc 4

After running the above codes, the directory structure should be as follows:

sroie
crops

|E train_label. jsonl
test_label. jsonl

19.20 Lecture Video DB

Note: The LV dataset has already provided cropped images and the corresponding annotations

Stepl: Download IIIT-CVid.zip to 1v/.

mkdir 1lv && cd 1lv

# Download LV dataset
wget http://cdn.iiit.ac.in/cdn/preon.iiit.ac.in/~kartik/IIIT-CVid.zip
unzip -q IIIT-CVid.zip

(continues on next page)
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# For image
mv ITIIT-CVid/Crops ./

# For annotation
mv ITIIT-CVid/train.txt train_label.txt & mv IIIT-CVid/val.txt val_label.txt && mv.
IIIT-CVid/test.txt test_label.txt

rm ITIIT-CVid.zip

Step2: Generate train_label. jsonl, val. jsonl, and test. jsonl with following command:

python tools/data/textdreog/lv_converter.py PATH/TO/1lv

After running the above codes, the directory structure should be as follows:

1lv
Crops

E train_label. jsonl
test_label. jsonl

19.21 LSVT

Stepl: Download train_full_images_0.tar.gz, train_full_images_1.tar.gz, and train_full_labels.json to 1svt/.

mkdir 1lsvt && cd lsvt

# Download LSVT dataset

wget https://dataset-bj.cdn.bcebos.com/lsvt/train_full_images_0.tar.gz
wget https://dataset-bj.cdn.bcebos.com/lsvt/train_full_images_1.tar.gz
wget https://dataset-bj.cdn.bcebos.com/lsvt/train_full_labels. json

mkdir annotations

tar -xf train_full_images_0.tar.gz && tar -xf train_full_images_1l.tar.gz

mv train_full_labels.json annotations/ && mv train_full_images_1/*.jpg train_full_
—.images_0/

mv train_full_images_0 imgs

rm train_full_images_0.tar.gz && rm train_full_images_l.tar.gz && rm -rf train_full_
—images_1

Step2: Generate train_label. jsonl and val_label. jsonl (optional) with the following command:

# Annotations of LSVT test split is not publicly available, split a validation
# set by adding --val-ratio 0.2

# Add --preserve-vertical to preserve vertical texts for training, otherwise

# vertical images will be filtered and stored in PATH/TO/lsvt/ignores

python tools/data/textdrecog/lsvt_converter.py PATH/TO/lsvt --nproc 4

After running the above codes, the directory structure should be as follows:
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lsvt
crops
ignores
train_label. jsonl
val_label.jsonl (optional)

19.22 FUNSD

Stepl: Download dataset.zip to funsd/.

mkdir funsd && cd funsd

# Download FUNSD dataset
wget https://guillaumejaume.github.io/FUNSD/dataset.zip
unzip -q dataset.zip

# For images
mv dataset/training_data/images imgs && mv dataset/testing_data/images/* imgs/

# For annotations

mkdir annotations

mv dataset/training_data/annotations annotations/training && mv dataset/testing_
—data/annotations annotations/test

rm dataset.zip & rm -rf dataset

Step2: Generate train_label.txt and test_label.txt and crop images using 4 processes with following
command (add --preserve-vertical if you wish to preserve the images containing vertical texts):

python tools/data/textrecog/funsd_converter.py PATH/TO/funsd --nproc 4

After running the above codes, the directory structure should be as follows:

— funsd

imgs

dst_imgs
annotations
train_label.txt
test_label.txt

19.23 IMGUR

Stepl: Run download_imgur5k.py to download images. You can merge PR#5 in your local repository to
enable a much faster parallel execution of image download.

mkdir imgur && cd imgur

git clone https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset.git

(continues on next page)
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# Download images from imgur.com. This may take SEVERAL HOURS!
python ./IMGUR5K-Handwriting-Dataset/download_imgur5k.py --dataset_info_dir ./
. IMGUR5K-Handwriting-Dataset/dataset_info/ --output_dir ./imgs

# For annotations
mkdir annotations

mv ./IMGUR5K-Handwriting-Dataset/dataset_info/*.json annotations

rm -rf IMGUR5K-Handwriting-Dataset

Step2: Generate train_label.txt, val_label.txt and test_label.txt and crop images with the follow-
ing command:

python tools/data/textrecog/imgur_converter.py PATH/TO/imgur

After running the above codes, the directory structure should be as follows:

imgur
crops
train_label. jsonl
test_label. jsonl
val_label. jsonl

19.24 KAIST

Stepl: Complete download KAIST _all.zip to kaist/.

mkdir kaist && cd kaist
mkdir imgs && mkdir annotations

# Download KAIST dataset
wget http://www.iapr-tcll.org/dataset/KAIST_SceneText/KAIST_all.zip
unzip -q KAIST_all.zip

rm KAIST_all.zip

Step2: Extract zips:

python tools/data/common/extract_kaist.py PATH/TO/kaist

Step3: Generate train_label. jsonl and val_label. jsonl (optional) with following command:

# Since KAIST does not provide an official split, you can split the dataset by.
—adding --val-ratio 0.2

# Add --preserve-vertical to preserve vertical texts for training, otherwise

# vertical images will be filtered and stored in PATH/TO/kaist/ignores

python tools/data/textrecog/kaist_converter.py PATH/TO/kaist --nproc 4

After running the above codes, the directory structure should be as follows:
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kaist
crops
ignores
train_label. jsonl
val_label.jsonl (optional)

19.25 MTWI

e Stepl: Download mtwi_2018_train.zip from homepage.

mkdir mtwi && cd mtwi

unzip -q mtwi_2018_train.zip
mv image_train imgs && mv txt_train annotations

rm mtwi_2018_train.zip

e Step2: Generate train_label. jsonl and val_label. jsonl (optional) with the following command:

# Annotations of MTWI test split is not publicly available, split a validation
# set by adding --val-ratio 0.2

# Add --preserve-vertical to preserve vertical texts for training, otherwise

# vertical images will be filtered and stored in PATH/TO/mtwi/ignores

python tools/data/textrecog/mtwi_converter.py PATH/TO/mtwi --nproc 4

 After running the above codes, the directory structure should be as follows:

mtwi
crops

E train_label. jsonl
val_label. jsonl (optional)

19.26 COCO Text v2

e Stepl: Download image train2014.zip and annotation cocotext.v2.zip to coco_textv2/.

mkdir coco_textv2 && cd coco_textv2
mkdir annotations

# Download COCO Text v2 dataset

wget http://images.cocodataset.org/zips/train2014.zip

wget https://github.com/bgshih/cocotext/releases/download/dl/cocotext.v2.zip
unzip -q train2014.zip && unzip -q cocotext.v2.zip

mv train2014 imgs && mv cocotext.v2.json annotations/

rm train2014.zip & rm -rf cocotext.v2.zip

» Step2: Generate train_label. jsonl and val_label. jsonl with the following command:
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# Add --preserve-vertical to preserve vertical texts for training, otherwise
# vertical images will be filtered and stored in PATH/TO/mtwi/ignores
python tools/data/textrecog/cocotext_converter.py PATH/TO/coco_textv2 --nproc 4

 After running the above codes, the directory structure should be as follows:

coco_textv2
crops
ignores
train_label. jsonl
val_label. jsonl

19.27 ReCTS

» Stepl: Download ReCTS.zip to rects/ from the homepage.

mkdir rects && cd rects

# Download ReCTS dataset

# You can also find Google Drive link on the dataset homepage

wget https://datasets.cvc.uab.es/rrc/ReCTS.zip --no-check-certificate
unzip -q ReCTS.zip

mv img imgs && mv gt_unicode annotations

rm ReCTS.zip -f && rm -rf gt

e Step2: Generate train_label. jsonl and val_label. jsonl (optional) with the following command:

# Annotations of ReCTS test split is not publicly available, split a validation
# set by adding --val-ratio 0.2

# Add --preserve-vertical to preserve vertical texts for training, otherwise

# vertical images will be filtered and stored in PATH/TO/rects/ignores

python tools/data/textrecog/rects_converter.py PATH/TO/rects --nproc 4

 After running the above codes, the directory structure should be as follows:

rects
crops
ignores
train_label. jsonl
val_label.jsonl (optional)
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19.28 ILST

Stepl: Download ITIT-ILST.zip from onedrive link

Step2: Run the following commands

unzip -q IIIT-ILST.zip && rm IIIT-ILST.zip
cd ITIIT-ILST

# rename files

cd Devanagari && for i in "ls'; do mv -f $i “echo "devanagari_"$i; done && cd ..
cd Malayalam && for i in "1s’; do mv -f $i “echo "malayalam_"$i’; done && cd ..
cd Telugu & for i in "1s'; do mv -f $i “echo "telugu_"$i"; done && cd ..

# transfer image path

mkdir imgs && mkdir annotations

mv Malayalam/{*jpg,*jpeg} imgs/ && mv Malayalam/*xml annotations/
mv Devanagari/*jpg imgs/ && mv Devanagari/*xml annotations/

mv Telugu/*jpeg imgs/ && mv Telugu/*xml annotations/

# remove unnecessary files
rm -rf Devanagari && rm -rf Malayalam && rm -rf Telugu && rm -rf README.txt

Step3: Generate train_label. jsonl and val_label. jsonl (optional) and crop images using 4 processes
with the following command (add --preserve-vertical if you wish to preserve the images containing vertical
texts). Since the original dataset doesn’t have a validation set, you may specify --val-ratio to split the dataset.
E.g., if val-ratio is 0.2, then 20% of the data are left out as the validation set in this example.

python tools/data/textrecog/ilst_converter.py PATH/TO/IIIT-ILST --nproc 4

After running the above codes, the directory structure should be as follows:

IIIT-ILST
crops
ignores
train_label. jsonl
val_label.jsonl (optional)

19.29 VinText

Stepl: Download vintext.zip to vintext

mkdir vintext && cd vintext

# Download dataset from google drive

wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&
—confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --
—-no-check-certificate 'https://docs.google.com/uc?export=download&
<+1d=1UUQhNvzgpZy7zXBFQp0®Qox-BBjunZOml' -0- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).
—*/\1\n/p')&id=1UUQhNvzgpZy7zXBFQp®Qox-BBjunZOml" -0 vintext.zip & rm -rf /tmp/
—cookies.txt

(continues on next page)
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(continued from previous page)

# Extract images and annotations

unzip -q vintext.zip & & rm vintext.zip

mv vietnamese/labels ./ & mv vietnamese/test_image ./ && mv vietnamese/train_
—.images ./ & & mv vietnamese/unseen_test_images ./

rm -rf vietnamese

# Rename files

mv labels annotations && mv test_image test &% mv train_images training && mv.
—unseen_test_images unseen_test

mkdir imgs

mv training imgs/ & mv test imgs/ && mv unseen_test imgs/

e Step2: Generate train_label.jsonl, test_label.jsonl, unseen_test_label. jsonl, and crop images
using 4 processes with the following command (add --preserve-vertical if you wish to preserve the images
containing vertical texts).

python tools/data/textrecog/vintext_converter.py PATH/TO/vietnamese --nproc 4

 After running the above codes, the directory structure should be as follows:

— vintext
crops
ignores
train_label. jsonl
test_label. jsonl
unseen_test_label. jsonl

19.30 BID

e Stepl: Download BID Dataset.zip

* Step2: Run the following commands to preprocess the dataset

# Rename
mv BID\ Dataset.zip BID_Dataset.zip

# Unzip and Rename
unzip -q BID_Dataset.zip && rm BID_Dataset.zip
mv BID\ Dataset BID

# The BID dataset has a problem of permission, and you may
# add permission for this file

chmod -R 777 BID

cd BID

mkdir imgs && mkdir annotations

# For images and annotations

mv CNH_Aberta/*in.jpg imgs & mv CNH_Aberta/*txt annotations &% rm -rf CNH_Aberta
mv CNH_Frente/*in.jpg imgs & mv CNH_Frente/*txt annotations &% rm -rf CNH_Frente
mv CNH_Verso/*in.jpg imgs & & mv CNH_Verso/*txt annotations && rm -rf CNH_Verso

mv CPF_Frente/*in.jpg imgs && mv CPF_Frente/*txt annotations && rm -rf CPF_Frente

(continues on next page)
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mv CPF_Verso/*in.jpg imgs && mv CPF_Verso/*txt annotations && rm -rf CPF_Verso
mv RG_Aberto/*in.jpg imgs && mv RG_Aberto/*txt annotations && rm -rf RG_Aberto
mv RG_Frente/*in.jpg imgs & & mv RG_Frente/*txt annotations & & rm -rf RG_Frente
mv RG_Verso/*in. jpg imgs && mv RG_Verso/*txt annotations && rm -rf RG_Verso

# Remove unnecessary files
rm -rf desktop.ini

» Step3: Generate train_label. jsonl and val_label. jsonl (optional) and crop images using 4 processes
with the following command (add --preserve-vertical if you wish to preserve the images containing vertical
texts). Since the original dataset doesn’t have a validation set, you may specify --val-ratio to split the dataset.
E.g., if test-ratio is 0.2, then 20% of the data are left out as the validation set in this example.

python tools/data/textrecog/bid_converter.py dPATH/TO/BID --nproc 4

 After running the above codes, the directory structure should be as follows:

BID
crops
ignores
train_label. jsonl
val_label. jsonl (optional)

19.31 RCTW

e Stepl: Download train_images.zip.001, train_images.zip.002, and train_gts.zip from the home-
page, extract the zips to rctw/imgs and rctw/annotations, respectively.

e Step2: Generate train_label. jsonl and val_label. jsonl (optional). Since the original dataset doesn’t
have a validation set, you may specify --val-ratio to split the dataset. E.g., if val-ratio is 0.2, then 20% of the
data are left out as the validation set in this example.

# Annotations of RCTW test split is not publicly available, split a validation set.,
—by adding --val-ratio 0.2

# Add --preserve-vertical to preserve vertical texts for training, otherwise.
—vertical images will be filtered and stored in PATH/TO/rctw/ignores

python tools/data/textrecog/rctw_converter.py PATH/TO/rctw --nproc 4

After running the above codes, the directory structure should be as follows:

— rctw
crops
ignores
train_label. jsonl
val_label. jsonl (optional)
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19.32 HierText

» Stepl (optional): Install AWS CLIL.

 Step2: Clone HierText repo to get annotations

mkdir HierText
git clone https://github.com/google-research-datasets/hiertext.git

e Step3: Download train.tgz, validation. tgz from aws

aws s3 --no-sign-request cp s3://open-images-dataset/ocr/train.tgz .
aws s3 --no-sign-request cp s3://open-images-dataset/ocr/validation.tgz .

 Step4: Process raw data

# process annotations

mv hiertext/gt ./

rm -rf hiertext

mv gt annotations

gzip -d annotations/train.jsonl.gz
gzip -d annotations/validation.jsonl.gz
# process images

mkdir imgs

mv train.tgz imgs/

mv validation.tgz imgs/

tar -xzvf imgs/train.tgz

tar -xzvf imgs/validation.tgz

e Step5: Generate train_label. jsonl and val_label. jsonl. HierText includes different levels of annotation,
including paragraph, line, and word. Check the original paper for details. E.g. set --level paragraph to
get paragraph-level annotation. Set --level line to get line-level annotation. set --level word to get word-
level annotation.

# Collect word annotation from HierText --level word

# Add --preserve-vertical to preserve vertical texts for training, otherwise.
—vertical images will be filtered and stored in PATH/TO/HierText/ignores

python tools/data/textrecog/hiertext_converter.py PATH/TO/HierText --level word --
—nproc 4

 After running the above codes, the directory structure should be as follows:

— HierText
crops
ignores
train_label. jsonl
val_label. jsonl
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19.33 ArT

Stepl: Download train_images.tar.gz, and train_labels. json from the homepage to art/

mkdir art && cd art
mkdir annotations

# Download ArT dataset
wget https://dataset-bj.cdn.bcebos.com/art/train_task2_images.tar.gz
wget https://dataset-bj.cdn.bcebos.com/art/train_task2_labels.json

# Extract

tar -xf train_task2_images.tar.gz

mv train_task2_images crops

mv train_task2_labels.json annotations/

# Remove unnecessary files
rm train_images.tar.gz

Step2: Generate train_label. jsonl and val_label. jsonl (optional). Since the test annotations are not
publicly available, you may specify --val-ratio to split the dataset. E.g., if val-ratio is 0.2, then 20% of the
data are left out as the validation set in this example.

# Annotations of ArT test split is not publicly available, split a validation set.,
—by adding --val-ratio 0.2
python tools/data/textrecog/art_converter.py PATH/TO/art

After running the above codes, the directory structure should be as follows:

— art

crops
train_label. jsonl

val_label.jsonl (optional)
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CHAPTER
TWENTY

KEY INFORMATION EXTRACTION

20.1 Overview

The structure of the key information extraction dataset directory is organized as follows.

L wildreceipt

— class_list.txt
— dict.txt

— image_files

—— openset_train.txt
— openset_test.txt
— test.txt

L— train.txt

20.2 Preparation Steps

20.2.1 WildReceipt

* Just download and extract wildreceipt.tar.

20.2.2 WildReceiptOpenset

 Step0: have WildReceipt prepared.

¢ Stepl: Convert annotation files to OpenSet format:

# You may find more available arguments by running

# python tools/data/kie/closeset_to_openset.py -h

python tools/data/kie/closeset_to_openset.py data/wildreceipt/train.txt data/wildreceipt/
—openset_train.txt

python tools/data/kie/closeset_to_openset.py data/wildreceipt/test.txt data/wildreceipt/
—.openset_test.txt

Note: You can learn more about the key differences between CloseSet and OpenSet annotations in our futorial.
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CHAPTER
TWENTYONE

NAMED ENTITY RECOGNITION

21.1 Overview

The structure of the named entity recognition dataset directory is organized as follows.

L— cluener2020
cluener_predict. json
dev. json
README.md
test.json
train. json
vocab. txt

21.2 Preparation Steps

21.2.1 CLUENER2020

* Download and extract cluener_public.zip to cluener2020/

¢ Download vocab.txt and move vocab. txt to cluener2020/
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CHAPTER
TWENTYTWO

USEFUL TOOLS

We provide some useful tools under mmocr/tools directory.

22.1 Publish a Model

Before you upload a model to AWS, you may want to (1) convert the model weights to CPU tensors, (2) delete the opti-
mizer states and (3) compute the hash of the checkpoint file and append the hash id to the filename. These functionalities
could be achieved by tools/publish_model.py.

python tools/publish_model.py INPUT_FILENAME OUTPUT_FILENAME

For example,

python tools/publish_model.py work_dirs/psenet/latest.pth psenet_r50_fpnf_sbn_ 1x_
—20190801.pth

The final output filename will be psenet_r50_fpnf_sbn_1x_20190801-{hash id}.pth.

22.2 Convert text recognition dataset to Imdb format

Reading images or labels from files can be slow when data are excessive, e.g. on a scale of millions. Besides, in
academia, most of the scene text recognition datasets are stored in Imdb format, including images and labels. To
get closer to the mainstream practice and enhance the data storage efficiency, MMOCR now provides tools/data/
utils/lmdb_converter.py to convert text recognition datasets to Imdb format.

22.2.1 Examples

Generate a mixed Imdb file with label.txt and images in imgs/:

python tools/data/utils/lmdb_converter.py label.txt imgs.lmdb -i imgs

Generate a mixed Imdb file with label.jsonl and images in imgs/:

python tools/data/utils/lmdb_converter.py label.json imgs.lmdb -i imgs -f jsonl

Generate a label-only Imdb file with label.txt:

python tools/data/utils/lmdb_converter.py label.txt label.lmdb --label-only
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Generate a label-only Imdb file with label.jsonl:

python tools/data/utils/lmdb_converter.py label.json label.lmdb --label-only -f jsonl

22.3 Convert annotations from Labelme

Labelme is a popular graphical image annotation tool. You can convert the labels generated by labelme to the MMOCR
data format using tools/data/common/labelme_converter.py. Both detection and recognition tasks are sup-
ported.

# tasks can be "det" or both "det", "recog"
python tools/data/common/labelme_converter.py <json_dir> <image_dir> <out_dir> --tasks
—<tasks>

For example, converting the labelme format annotation in tests/data/toy_dataset/labelme to MMOCR de-
tection labels instances_training.txt and cropping the image patches for recognition task to tests/data/
toy_dataset/crops with the labels train_label. jsonl:

python tools/data/common/labelme_converter.py tests/data/toy_dataset/labelme tests/data/
—toy_dataset/imgs tests/data/toy_dataset --tasks det recog

22.4 Log Analysis

You can use tools/analyze_logs.py to plot loss/hmean curves given a training log file. Run pip install
seaborn first to install the dependency.
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python tools/analyze_logs.py plot_curve [--keys ${KEVYS}!] [--title ${TITLE}] [--legend
—{LEGEND}] [--backend BACKEND}] [--style STYLE}] [--out OUT_FILE}]

Examples:

Download the following DBNet and CRNN training logs to run demos.

wget https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_r18_fpnc_sbn_1200e_
—icdar2015_20210329-ba3ab597.1og.json -0 DBNet_log. json

wget https://download.openmmlab.com/mmocr/textrecog/crnn/20210326_111035.1og.json -0.
—CRNN_log. json

Please specify an output path if you are running the codes on systems without a GUIL

¢ Plot loss metric.

python tools/analyze_logs.py plot_curve DBNet_log.json --keys loss --legend loss

Plot hmean-iou:hmean metric of text detection.

python tools/analyze_logs.py plot_curve DBNet_log.json --keys hmean-iou:hmean --
—.legend hmean-iou:hmean

* Plot 0_1-N.E.D metric of text recognition.
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python tools/analyze_logs.py plot_curve CRNN_log.json --keys O_1-N.E.D --legend 0_1-
~N.E.D

Compute the average training speed.

python tools/analyze_logs.py cal_train_time CRNN_log.json --include-outliers

The output is expected to be like the following.

slowest epoch 4, average time is 0.3464
fastest epoch 5, average time is 0.2365
time std over epochs is 0.0356

average iter time: 0.2906 s/iter
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CHAPTER
TWENTYTHREE

CHANGELOG

23.1 0.6.3 (03/11/2022)

23.1.1 Highlights

This release enhances the inference script and fixes a bug that might cause failure on TorchServe.

Besides, a new backbone, oCLIP-ResNet, and a dataset preparation tool, Dataset Preparer, have been released in
MMOCR 1.0.0rc3 (1.x branch). Check out the changelog for more information about the features, and maintenance
plan for how we will maintain MMOCR in the future.

23.1.2 New Features & Enhancements
e Convert numpy.float32 type to python built-in float type by @JunYaol020 in https://github.com/open-
mmlab/mmocr/pull/1462

e When °’ char not in output string, output is also considered to be a... by @JunYaol020 in
https://github.com/open-mmlab/mmocr/pull/1457

* Refactor issue template by @Harold-1kk in https://github.com/open-mmlab/mmoct/pull/1449
* issue template by @Harold-1kk in https://github.com/open-mmlab/mmocr/pull/1489
» Update maintainers by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/1504

¢ Support MMCYV < 1.8.0 by @gaotongxiao in https://github.com/open-mmlab/mmoct/pull/1508

23.1.3 Bug Fixes

* fix ci by @Harold-Ikk in https://github.com/open-mmlab/mmocr/pull/1491
* [CI] Fix CI by @gaotongxiao in https://github.com/open-mmlab/mmoct/pull/1463
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23.1.4 Docs

* [DOCs] Add MMYOLO in Readme. by @ysh329 in https://github.com/open-mmlab/mmocr/pull/1475
* [Docs] Update contributing.md by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/1490

23.1.5 New Contributors

* @ysh329 made their first contribution in https://github.com/open-mmlab/mmoct/pull/1475
Full Changelog: https://github.com/open-mmlab/mmocr/compare/v0.6.2...v0.6.3

23.2 0.6.2 (14/10/2022)

23.2.1 Highlights

It’s now possible to train/test models through Python Interface. For example, you can train a model under mmocr/
directory in this way:

# an example of how to use such modifications is shown as the following:
from mmocr.tools.train import TrainArg, parse_args, run_train_cmd

args = TrainArg(config='/path/to/config.py")

args.add_arg('--work-dir', '/path/to/dir')

args = parse_args(args.arg_list)

run_train_cmd(args)

See PR #1138 for more details.

Besides, release candidates for MMOCR 1.0 with tons of new features are available at 1.x branch now! Check out the
changelog for more information about the features, and maintenance plan for how we will maintain MMOCR in the
future.

23.2.2 New Features

e Adding test & train API to be used directly in code by @wybryan in https://github.com/open-
mmlab/mmocr/pull/1138

* Let ResizeOCR full support mmcv.impad’s pad_val parameters by @hsiehpinghan in https://github.com/open-
mmlab/mmocr/pull/1437

23.2.3 Bug Fixes

 Fix ABINet config by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/1256

e Fix Recognition Score Normalization Issue by @xinke-wang in  https://github.com/open-
mmlab/mmocr/pull/1333

* Remove max_seq_len inconsistency by @antoniolanzal996 in https://github.com/open-
mmlab/mmocr/pull/1433

* box points ordering by @yjmm10 in https://github.com/open-mmlab/mmocr/pull/1205

e Correct spelling by misspelling ‘preperties’ to ‘properties’ by @JunYaol020 in https://github.com/open-
mmlab/mmocr/pull/1446
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23.2.4 Docs

Demo, experiments and live inference API on Tiyaro by @Venkat2811 in https://github.com/open-
mmlab/mmocrt/pull/1272

Update 1.x info by @Harold-1kk in https://github.com/open-mmlab/mmocr/pull/1369

Add global notes to the docs and the version switcher menu by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/1406

Logger Hook Config Updated to Add WandB by @Nourollah in https:/github.com/open-
mmlab/mmocr/pull/1345

23.2.5 New Contributors

@Venkat2811 made their first contribution in https://github.com/open-mmlab/mmoct/pull/1272
@wybryan made their first contribution in https://github.com/open-mmlab/mmocr/pull/1139
@hsiehpinghan made their first contribution in https://github.com/open-mmlab/mmocr/pull/1437
@yjmm10 made their first contribution in https://github.com/open-mmlab/mmocr/pull/1205
@JunYao1020 made their first contribution in https://github.com/open-mmlab/mmocr/pull/1446

@Nourollah made their first contribution in https://github.com/open-mmlab/mmocr/pull/1345

Full Changelog: https://github.com/open-mmlab/mmocr/compare/v0.6.1...v0.6.2

23.3 0.6.1 (04/08/2022)

23.3.1 Highlights

1.
2.
3.

ArT dataset is available for text detection and recognition!
Fix several bugs that affects the correctness of the models.

Thanks to MIM, our installation is much simpler now! The docs has been renewed as well.

23.3.2 New Features & Enhancements

Add ArT by @xinke-wang in https://github.com/open-mmlab/mmocr/pull/1006
add ABINet_Vision api by @ Abdelrahman350 in https://github.com/open-mmlab/mmocr/pull/1041
add codespell ignore and use mdformat by @Harold-1kk in https://github.com/open-mmlab/mmocr/pull/1022

Add mim to extras_requrie to setup.py, update mminstall... by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/1062

Simplify normalized edit distance calculation by @maxbachmann in https://github.com/open-
mmlab/mmocrt/pull/1060

Test mim in CI by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/1090
Remove redundant steps by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/1091
Update links to SDMGR links by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/1252
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23.3.3 Bug Fixes

Remove unnecessary requirements by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/1000

Remove confusing img_scales in pipelines by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/1007

13 tL)

inplace operator “+=" will cause RuntimeError when model backward by @garvan2021 in
https://github.com/open-mmlab/mmocr/pull/1018

Fix a typo problem in MASTER by @Mountchicken in https://github.com/open-mmlab/mmocr/pull/1031
Fix config name of MASTER in ocr.py by @Mountchicken in https://github.com/open-mmlab/mmocr/pull/1044
Relax OpenCV requirement by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/1061

Restrict the minimum version of OpenCV to avoid potential vulnerability by @gaotongxiao in
https://github.com/open-mmlab/mmocr/pull/1065

typo by @tpoisonooo in https://github.com/open-mmlab/mmocr/pull/1024
Fix a typo in setup.py by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/1095

fix #1067: add torchserve DockerFile and fix bugs by @Hegelim in https://github.com/open-
mmlab/mmocr/pull/1073

Incorrect filename in labelme_converter.py by @xiefeifeihu in https://github.com/open-mmlab/mmocr/pull/1103
Fix dataset configs by @Mountchicken in https://github.com/open-mmlab/mmocr/pull/1106

Fix #1098: normalize text recognition scores by @Hegelim in https://github.com/open-mmlab/mmocr/pull/1119
Update ST_SA_MIJ_train.py by @MingyuLau in https://github.com/open-mmlab/mmocr/pull/1117

PSENet metafile by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/1121

Flexible ways of getting file name by @balandongiv in https://github.com/open-mmlab/mmocr/pull/1107

Updating edge-embeddings after each GNN layer by @amitbcp in https://github.com/open-
mmlab/mmocr/pull/1134

links update by @TekayaNidham in https://github.com/open-mmlab/mmocr/pull/1141
bug fix: access params by cfg.get by @doem97 in https://github.com/open-mmlab/mmoct/pull/1145

Fix a bug in LmdbAnnFileBackend that cause breaking in Synthtext detection training by @Mountchicken in
https://github.com/open-mmlab/mmocr/pull/1159

Fix typo of —Imdb-map-size default value by @easilylazy in https://github.com/open-mmlab/mmocr/pull/1147
Fixed docstring syntax error of line 19 & 21 by @ APX103 in https://github.com/open-mmlab/mmocr/pull/1157

Update Imdb_converter and ct80 cropped image source in document by @doem97 in https://github.com/open-
mmlab/mmocr/pull/1164

MMCV compatibility due to outdated MMDet by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/1192

Update maximum version of mmcv by @xinke-wang in https://github.com/open-mmlab/mmoct/pull/1219
Update ABINet links for main by @Mountchicken in https://github.com/open-mmlab/mmocr/pull/1221
Update owners by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/1248

Add back some missing fields in configs by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/1171
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23.3.4 Docs

Fix typos by @xinke-wang in https://github.com/open-mmlab/mmocr/pull/1001

Configure Myst-parser to parse anchor tag by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/1012

Fix a error in docs/en/tutorials/dataset_types.md by @Mountchicken in https://github.com/open-
mmlab/mmocr/pull/1034

Update readme according to the guideline by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/1047
Limit markdown version by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/1172

Limit extension versions by @Mountchicken in https://github.com/open-mmlab/mmocr/pull/1210

Update installation guide by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/1254

Update image link @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/1255

23.3.5 New Contributors

@tpoisonooo made their first contribution in https://github.com/open-mmlab/mmocr/pull/1024

@ Abdelrahman350 made their first contribution in https://github.com/open-mmlab/mmocr/pull/1041
@Hegelim made their first contribution in https://github.com/open-mmlab/mmocr/pull/1073
@xiefeifeihu made their first contribution in https://github.com/open-mmlab/mmoct/pull/1103
@MingyuLau made their first contribution in https://github.com/open-mmlab/mmocr/pull/1117
@balandongiv made their first contribution in https://github.com/open-mmlab/mmocr/pull/1107
@amitbcp made their first contribution in https://github.com/open-mmlab/mmocr/pull/1134
@TekayaNidham made their first contribution in https://github.com/open-mmlab/mmocr/pull/1141
@easilylazy made their first contribution in https://github.com/open-mmlab/mmocr/pull/1147

@ APX103 made their first contribution in https://github.com/open-mmlab/mmocr/pull/1157

Full Changelog: https://github.com/open-mmlab/mmocr/compare/v0.6.0...v0.6.1

23.4 0.6.0 (05/05/2022)

23.4.1 Highlights

1.

A new recognition algorithm MASTER has been added into MMOCR, which was the championship solution
for the “ICDAR 2021 Competition on Scientific Table Image Recognition to Latex”! The model pre-trained on
SynthText and MJSynth is available for testing! Credit to @JiaquanYe

DBNet++ has been released now! A new Adaptive Scale Fusion module has been equipped for feature en-
hancement. Benefiting from this, the new model achieved 2% better h-mean score than its predecessor on the
ICDAR2015 dataset.

Three more dataset converters are added: LSVT, RCTW and HierText. Check the dataset zoo (Det & Recog ) to
explore further information.
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4. To enhance the data storage efficiency, MMOCR now supports loading both images and labels from .Imdb format
annotations for the text recognition task. To enable such a feature, the new Imdb_converter.py is ready for use
to pack your cropped images and labels into an Imdb file. For a detailed tutorial, please refer to the following
sections and the doc.

5. Testing models on multiple datasets is a widely used evaluation strategy. MMOCR now supports automatically
reporting mean scores when there is more than one dataset to evaluate, which enables a more convenient com-
parison between checkpoints. Doc

6. Evaluation is more flexible and customizable now. For text detection tasks, you can set the score threshold range
where the best results might come out. (Doc) If too many results are flooding your text recognition train log, you
can trim it by specifying a subset of metrics in evaluation config. Check out the Evaluation section for details.

7. MMOCR provides a script to convert the .json labels obtained by the popular annotation toolkit Labelme to
MMOCR-supported data format. @Y-M-Y contributed a log analysis tool that helps users gain a better under-
standing of the entire training process. Read tutorial docs to get started.

23.4.2 Lmdb Dataset

Reading images or labels from files can be slow when data are excessive, e.g. on a scale of millions. Besides, in
academia, most of the scene text recognition datasets are stored in Imdb format, including images and labels. To get
closer to the mainstream practice and enhance the data storage efficiency, MMOCR now officially supports loading
images and labels from Imdb datasets via a new pipeline LoadImageFromLLMDB. This section is intended to serve as
a quick walkthrough for you to master this update and apply it to facilitate your research.

Specifications

To better align with the academic community, MMOCR now requires the following specifications for Imdb datasets:

* The parameter describing the data volume of the dataset is num-samples instead of total_number (depre-
cated).

* Images and labels are stored with keys in the form of image-000000001 and 1abel-000000001, respectively.

Usage

1. Use existing academic Imdb datasets if they meet the specifications; or the tool provided by MMOCR to pack
images & annotations into a Imdb dataset.

¢ Previously, MMOCR had a function txt21mdb (deprecated) that only supported converting labels to Imdb for-
mat. However, it is quite different from academic Imdb datasets, which usually contain both images and labels.
Now MMOCR provides a new utility Imdb_converter to convert recognition datasets with both images and labels
to Imdb format.

e Say that your recognition data in MMOCR’s format are organized as follows. (See an example in
ocr_toy_dataset).

# Directory structure

|—img_path

I |-- imgl.jpg

I |-- img2.jpg

| [-- ...

| --label.txt (or label.jsonl)

(continues on next page)
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(continued from previous page)

# Annotation format
label.txt: imgl.jpg HELLO
img2.jpg WORLD

label. jsonl: {'filename':'imgl.jpg', 'text':'HELLO'}
{'filename':"'img2.jpg"', 'text':'WORLD'}

¢ Then pack these files up:

python tools/data/utils/lmdb_converter.py {PATH_TO_LABEL} {OUTPUT_PATH} --i {PATH_
. TO_IMAGES}

* Check out tools.md for more details.
2. The second step is to modify the configuration files. For example, to train CRNN on MJ and ST datasets:

 Set parser as LineJsonParser and file_format as ‘lmdb’ in dataset config

# configs/_base_/recog_datasets/ST_MJ_train.py
trainl = dict(
type='0CRDataset"',
img_prefix=train_img_prefixl,
ann_file=train_ann_filel,
loader=dict(
type='AnnFilelLoader"',
repeat=1,
file_format="1mdb",
parser=dict(
type='LineJsonParser',
keys=['filename', 'text'],
D),
pipeline=None,
test_mode=False)

* Use LoadImageFromLMDB in pipeline:

# configs/_base_/recog_pipelines/crnn_pipeline.py
train_pipeline = [
dict(type="LoadImageFromLMDB', color_type='grayscale'),

3. You are good to go! Start training and MMOCR will load data from your Imdb dataset.
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23.4.3 New Features & Enhancements
e Add analyze_logs in tools and its description in docs by @Y-M-Y in https:/github.com/open-
mmlab/mmocr/pull/899
e Add LSVT Data Converter by @xinke-wang in https://github.com/open-mmlab/mmocr/pull/896
e Add RCTW dataset converter by @xinke-wang in https://github.com/open-mmlab/mmocr/pull/914

* Support computing mean scores in UniformConcatDataset by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/981

e Support loading images and labels from Imdb file by @Mountchicken in https://github.com/open-
mmlab/mmocr/pull/982

e Add recog2lmdb and new toy dataset files by @Mountchicken in https://github.com/open-
mmlab/mmocr/pull/979

e Add Ilabelme converter for textdet and textrecog by @cuhk-hbsun in https:/github.com/open-
mmlab/mmocr/pull/972

» Update CircleCI configs by @xinke-wang in https://github.com/open-mmlab/mmoct/pull/918

» Update Git Action by @xinke-wang in https://github.com/open-mmlab/mmoct/pull/930

* More customizable fields in dataloaders by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/933
 Skip CIs when docs are modified by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/941

* Rename Github tests, fix ignored paths by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/946
* Support latest MMCYV by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/959

e Support dynamic threshold range in eval hmean by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/962

* Update the version requirement of mmdet in docker by @Mountchicken in https://github.com/open-
mmlab/mmoct/pull/966

* Replace opencv-python-headless with open-python by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/970

» Update Dataset Configs by @xinke-wang in https://github.com/open-mmlab/mmocr/pull/980
* Add SynthText dataset config by @xinke-wang in https://github.com/open-mmlab/mmocr/pull/983

e Automatically report mean scores when applicable by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/995

* Add DBNet++ by @xinke-wang in https://github.com/open-mmlab/mmocr/pull/973
¢ Add MASTER by @JiaquanYe in https://github.com/open-mmlab/mmocr/pull/807

e Allow choosing metrics to report in text recognition tasks by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/989

* Add HierText converter by @Mountchicken in https://github.com/open-mmlab/mmoct/pull/948
* Fix lint_only in CircleCI by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/998
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23.4.4 Bug Fixes

» Fix CircleCi Main Branch Accidentally Run PR Stage Test by @xinke-wang in https://github.com/open-
mmlab/mmocr/pull/927

e Fix a deprecate warning about mmdet.datasets.pipelines.formating by @Mountchicken in
https://github.com/open-mmlab/mmocr/pull/944

* Fix a Bug in ResNet plugin by @Mountchicken in https://github.com/open-mmlab/mmoct/pull/967
* revert a wrong setting in db_r18 cfg by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/978
* Fix TotalText Anno version issue by @xinke-wang in https://github.com/open-mmlab/mmocr/pull/945

e Update installation step of albumentations by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/984

* Fix ImgAug transform by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/949

* Fix GPG key error in CI and docker by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/988
* update label.lImdb by @Mountchicken in https://github.com/open-mmlab/mmocr/pull/991

* correct meta key by @garvan2021 in https://github.com/open-mmlab/mmocr/pull/926

* Use new image by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/976

* Fix Data Converter Issues by @xinke-wang in https://github.com/open-mmlab/mmocr/pull/955

23.4.5 Docs

» Update CONTRIBUTING.md by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/905

* Fix the misleading description in test.py by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/908
» Update recog.md for Imdb Generation by @xinke-wang in https://github.com/open-mmlab/mmocr/pull/934

* Add MMCYV by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/954

* Add wechat QR code to CN readme by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/960

» Update CONTRIBUTING.md by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/947

* Use QR codes from MMCV by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/971

* Renew dataset_types.md by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/997

23.4.6 New Contributors

* @Y-M-Y made their first contribution in https://github.com/open-mmlab/mmoct/pull/899
Full Changelog: https://github.com/open-mmlab/mmocr/compare/v0.5.0...v0.6.0
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23.5 0.5.0 (31/03/2022)

23.5.1 Highlights

1. MMOCR now supports SPACE recognition! (What a prominent feature!) Users only need to convert the recog-

nition annotations that contain spaces from a plain . txt file to JSON line format . jsonl, and then revise a few
configurations to enable the LineJsonParser. For more information, please read our step-by-step tutorial.

Tesseract is now available in MMOCR! While MMOCR is more flexible to support various downstream tasks,
users might sometimes not be satisfied with DL models and would like to turn to effective legacy solutions.
Therefore, we offer this option in mmocr.utils.ocr by wrapping Tesseract as a detector and/or recognizer.
Users can easily create an MMOCR object by MMOCR(det="Tesseract’, recog='Tesseract’). Credit to
@garvan2021

We release data converters for 16 widely used OCR datasets, including multiple scenarios such as document,
handwritten, and scene text. Now it is more convenient to generate annotation files for these datasets. Check the
dataset zoo ( Det & Recog ) to explore further information.

Special thanks to @EighteenSprings @Beyond Yourself @yangrisheng, who had actively participated in docu-
mentation translation!

23.5.2 Migration Guide - ResNet

Some refactoring processes are still going on. For text recognition models, we unified the ResNet-1ike architectures
which are used as backbones. By introducing stage-wise and block-wise plugins, the refactored ResNet is highly flexible
to support existing models, like ResNet31 and ResNet45, and other future designs of ResNet variants.

Plugin

Plugin is a module category inherited from MMCV’s implementation of PLUGIN_LAYERS, which can be in-
serted between each stage of ResNet or into a basicblock. You can find a simple implementation of plugin at
mmocr/models/textrecog/plugins/common.py, or click the button below.

@PLUGIN_LAYERS.register_module()
class Maxpool2d(nn.Module):
"""A wrapper around nn.Maxpool2d().

Args:
kernel_size (int or tuple(int)): Kernel size for max pooling layer
stride (int or tuple(int)): Stride for max pooling layer
padding (int or tuple(int)): Padding for pooling layer

i

def __init__(self, kernel_size, stride, padding=0, **kwargs):
super (Maxpool2d, self).__init__()
self.model = nn.MaxPool2d(kernel_size, stride, padding)

def forward(self, x):

o

Args:
x (Tensor): Input feature map

(continues on next page)
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(continued from previous page)

Returns:
Tensor: The tensor after Maxpooling layer.

o

return self.model (x)

Stage-wise Plugins

* ResNet is composed of stages, and each stage is composed of blocks. E.g., ResNet18 is composed of 4 stages,
and each stage is composed of basicblocks. For each stage, we provide two ports to insert stage-wise plugins by
giving plugins parameters in ResNet.

[portl: before stage] ---> [stage] ---> [port2: after stage]

* E.g. Using a ResNet with four stages as example. Suppose we want to insert an additional convolution layer
before each stage, and an additional convolution layer at stage 1, 2, 4. Then you can define the special ResNet18

like this

D

resnetl18_speical = ResNet(
# for simplicity, some required
# parameters are omitted
plugins=[
dict(

cfg=dict(

type="'ConvModule',
kernel_size=3,

stride=1,

padding=1,
norm_cfg=dict(type='BN"),
act_cfg=dict(type="RelLU")),
stages=(True, True, True, True),
position='before_stage')

dict(

cfg=dict(

type="'ConvlModule"',

kernel_size=3,

stride=1,

padding=1,
norm_cfg=dict(type="'BN"),
act_cfg=dict(type="RelLU")),
stages=(True, True, False, True),
position="after_stage')

* You can also insert more than one plugin in each port and those plugins will be executed in order. Let’s take
ResNet in MASTER as an example:

— ResNet in Master is based on ResNet31. And after each stage, a module named GCAModule will be used.
The GCAModule is inserted before the stage-wise convolution layer in ResNet31. In conlusion, there will
be two plugins at after_stage port in the same time.

resnet_master = ResNet(
# for simplicity, some required

(continues on next page)
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(continued from previous page)

# parameters are omitted
plugins=[
dict(
cfg=dict(type="Maxpool2d', kernel size=2, stride=(2,.
~2)),
stages=(True, True, False, False),
position="before_stage'),
dict(
cfg=dict(type="'Maxpool2d', kernel_size=(2, 1),.
—stride=(2, 1)),
stages=(False, False, True, False),
position="before_stage'),
dict(
cfg=dict(type='GCAModule', kernel_size=3, stride=1,.
—padding=1),
stages=[True, True, True, True],
position="after_stage'),
dict(
cfg=dict(
type="'ConvModule',
kernel_size=3,
stride=1,
padding=1,
norm_cfg=dict(type="'BN"),
act_cfg=dict(type='RelLU")),
stages=(True, True, True, True),
position="after_stage')

D

— In each plugin, we will pass two parameters (in_channels, out_channels) to support operations that
need the information of current channels.

Block-wise Plugin (Experimental)

We also refactored the BasicBlock used in ResNet. Now it can be customized with block-wise plugins. Check
here for more details.

BasicBlock is composed of two convolution layer in the main branch and a shortcut branch. We provide four
ports to insert plugins.

[portl: before_convl] ---> [convl] --->
[port2: after_convl] ---> [conv2] --->
[port3: after_conv2] ---> +(shortcut) ---> [portd: after_shortcut]

In each plugin, we will pass a parameter in_channels to support operations that need the information of current
channels.

E.g. Build a ResNet with customized BasicBlock with an additional convolution layer before conv1:

resnet_31 = ResNet(
in_channels=3,
stem_channels=[64, 128],

(continues on next page)
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block_cfgs=dict(type="BasicBlock'),
arch_layers=[1, 2, 5, 3],
arch_channels=[256, 256, 512, 512],
strides=[1, 1, 1, 17,
plugins=[
dict(
cfg=dict(type="Maxpool2d"',
kernel_size=2,
stride=(2, 2)),
stages=(True, True, False, False),
position="before_stage'),
dict(
cfg=dict(type="Maxpool2d',
kernel_size=(2, 1),
stride=(2, 1)),
stages=(False, False, True, False),
position="before_stage'),
dict(
cfg=dict(
type="'ConvModule',
kernel_size=3,
stride=1,
padding=1,
norm_cfg=dict(type="'BN"),
act_cfg=dict(type='RelLU")),
stages=(True, True, True, True),
position="after_stage')

D

Full Examples

* ResNet45 is used in ASTER and ABINet without any plugins.

resnet45_aster = ResNet(
in_channels=3,
stem_channels=[64, 128],
block_cfgs=dict(type='BasicBlock', use_convlxl="True'),
arch_layers=[3, 4, 6, 6, 3],
arch_channels=[32, 64, 128, 256, 512],
strides=[(2, 2), (2, 2), (2, 1), (2, 1, 2, DD

resnet45_abi = ResNet(
in_channels=3,
stem_channels=32,
block_cfgs=dict(type='BasicBlock', use_convlxl='True'),
arch_layers=[3, 4, 6, 6, 3],
arch_channels=[32, 64, 128, 256, 5127,
strides=[2, 1, 2, 1, 11)

* ResNet31 is a typical architecture to use stage-wise plugins. Before the first three stages, Maxpooling layer is

used. After each stage, a convolution layer with BN and ReLU is used.
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resnet_31 = ResNet(
in_channels=3,
stem_channels=[64, 128],
block_cfgs=dict(type='BasicBlock'),
arch_layers=[1, 2, 5, 3],
arch_channels=[256, 256, 512, 5127,
strides=[1, 1, 1, 1],
plugins=[
dict(
cfg=dict(type="Maxpool2d',
kernel_size=2,
stride=(2, 2)),
stages=(True, True, False, False),
position="before_stage'),
dict(
cfg=dict(type="Maxpool2d',
kernel_size=(2, 1),
stride=(2, 1)),
stages=(False, False, True, False),
position="before_stage'),
dict(
cfg=dict(
type="ConvModule',
kernel_size=3,
stride=1,
padding=1,
norm_cfg=dict(type="BN"),
act_cfg=dict(type="RelLU")),
stages=(True, True, True, True),
position="after_stage')

D

23.5.3 Migration Guide - Dataset Annotation Loader

The annotation loaders, LmdbLoader and HardDiskLoader, are unified into AnnFileLoader for a more consistent
design and wider support on different file formats and storage backends. AnnFileLoader can load the annotations
from disk(default), http and petrel backend, and parse the annotation in txt or 1lmdb format. LmdbLoader and
HardDiskLoader are deprecated, and users are recommended to modify their configs to use the new AnnFileLoader.
Users can migrate their legacy loader HardDiskLoader referring to the following example:

# Legacy config
train = dict(
type="'0OCRDataset',

loader=dict(
type="'HardDiskLoader"',
..2))

# Suggested config
train = dict(
type="0OCRDataset',

(continues on next page)
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(continued from previous page)

loader=dict(
type='AnnFileLoader',
file_storage_backend="'disk',
file_format="txt',

D)

Similarly, using AnnFileLoader with file_format="1lmdb' instead of LmdbLoader is strongly recommended.

23.5.4 New Features & Enhancements

» Update mmcyv install by @Harold-1kk in https://github.com/open-mmlab/mmocr/pull/775
» Upgrade isort by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/771

e Automatically infer device for inference if not speicifed by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/781

* Add open-mmlab precommit hooks by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/787
* Add windows CI by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/790

e Add CurvedSyntext150k Converter by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/719
* Add FUNSD Converter by @xinke-wang in https://github.com/open-mmlab/mmocr/pull/808

e Support loading annotation file with petrel/http backend by @cuhk-hbsun in https://github.com/open-
mmlab/mmocr/pull/793

 Support different seeds on different ranks by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/820
 Support json in recognition converter by @Mountchicken in https://github.com/open-mmlab/mmocr/pull/844

e Add args and docs for multi-machine training/testing by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/849

* Add warning info for LineStrParser by @xinke-wang in https://github.com/open-mmlab/mmocr/pull/850
* Deploy openmmlab-bot by @ gaotongxiao in https://github.com/open-mmlab/mmoct/pull/876

* Add Tesserocr Inference by @garvan2021 in https://github.com/open-mmlab/mmocr/pull/814

¢ Add LV Dataset Converter by @xinke-wang in https://github.com/open-mmlab/mmocr/pull/871

* Add SROIE Converter by @xinke-wang in https://github.com/open-mmlab/mmocr/pull/§10

* Add NAF Converter by @xinke-wang in https://github.com/open-mmlab/mmocr/pull/815

* Add DeText Converter by @xinke-wang in https://github.com/open-mmlab/mmocr/pull/818

* Add IMGUR Converter by @xinke-wang in https://github.com/open-mmlab/mmocr/pull/825

* Add ILST Converter by @Mountchicken in https://github.com/open-mmlab/mmocr/pull/833

* Add KAIST Converter by @xinke-wang in https://github.com/open-mmlab/mmocr/pull/835

e Add IC11 (Born-digital Images) Data Converter by @xinke-wang in https://github.com/open-
mmlab/mmocr/pull/857

e Add IC13 (Focused Scene Text) Data Converter by @xinke-wang in https://github.com/open-
mmlab/mmocr/pull/861

* Add BID Converter by @Mountchicken in https://github.com/open-mmlab/mmocr/pull/862
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Add Vintext Converter by @Mountchicken in https://github.com/open-mmlab/mmocr/pull/864

Add MTWI Data Converter by @xinke-wang in https://github.com/open-mmlab/mmoct/pull/867

Add COCO Text v2 Data Converter by @xinke-wang in https://github.com/open-mmlab/mmocr/pull/872
Add ReCTS Data Converter by @xinke-wang in https://github.com/open-mmlab/mmocr/pull/892
Refactor ResNets by @Mountchicken in https://github.com/open-mmlab/mmocr/pull/809

23.5.5 Bug Fixes

Bump mmdet version to 2.20.0 in Dockerfile by @GPhilo in https://github.com/open-mmlab/mmocr/pull/763
Update mmdet version limit by @cuhk-hbsun in https://github.com/open-mmlab/mmocr/pull/773

Minimum version requirement of albumentations by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/769

Disable worker in the dataloader of gpu unit test by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/780

Standardize the type of torch.device in ocrpy by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/800

Use RECOGNIZER instead of DETECTORS by @cuhk-hbsun in https://github.com/open-
mmlab/mmocr/pull/685

Add num_classes to configs of ABINet by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/805

Support loading space character from dict file by @gaotongxiao in https://github.com/open-
mmlab/mmocrt/pull/854

Description  in  tools/data/utils/txt2lmdb.py = by = @Mountchicken in  https://github.com/open-
mmlab/mmocr/pull/870

ignore_index in SARLoss by @Mountchicken in https://github.com/open-mmlab/mmocr/pull/869

Fix a bug that may cause inplace operation error by @Mountchicken in https://github.com/open-
mmlab/mmocr/pull/884

Use hyphen instead of underscores in script args by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/890

23.5.6 Docs

Add deprecation message for deploy tools by @xinke-wang in https://github.com/open-mmlab/mmocr/pull/801

Reorganizing OpenMMLab projects in readme by @xinke-wang in https://github.com/open-
mmlab/mmocr/pull/806

Add demo/README_zh.md by @EighteenSprings in https://github.com/open-mmlab/mmocr/pull/802
Add detailed version requirement table by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/778

Correct misleading section title in training.md by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/819

Update README_zh-CN document URL by @BeyondYourself in https:/github.com/open-
mmlab/mmocr/pull/823

translate testing.md. by @yangrisheng in https://github.com/open-mmlab/mmocr/pull/822
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Fix confused description for load-from and resume-from by @xinke-wang in https://github.com/open-
mmlab/mmocr/pull/842

Add documents getting_started in docs/zh by @BeyondYourself in https://github.com/open-
mmlab/mmocr/pull/841

Add the model serving translation document by @BeyondYourself in https://github.com/open-
mmlab/mmocr/pull/845

Update docs about installation on Windows by @Mountchicken in https://github.com/open-
mmlab/mmocrt/pull/852

Update tutorial notebook by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/853

Update Instructions for New Data Converters by @xinke-wang in https://github.com/open-
mmlab/mmocrt/pull/900

Brief installation instruction in README by @Harold-1kk in https://github.com/open-mmlab/mmocr/pull/897
update doc for ILST, VinText, BID by @Mountchicken in https://github.com/open-mmlab/mmocr/pull/902
Fix typos in readme by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/903

Recog dataset doc by @Harold-1kk in https://github.com/open-mmlab/mmocr/pull/893

Reorganize the directory structure section in det.md by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/894

23.6 New Contributors

@GPhilo made their first contribution in https://github.com/open-mmlab/mmocr/pull/763
@xinke-wang made their first contribution in https://github.com/open-mmlab/mmocr/pull/801
@EighteenSprings made their first contribution in https://github.com/open-mmlab/mmocr/pull/802
@Beyond Yourself made their first contribution in https://github.com/open-mmlab/mmocr/pull/823
@yangrisheng made their first contribution in https://github.com/open-mmlab/mmocr/pull/822
@Mountchicken made their first contribution in https://github.com/open-mmlab/mmocr/pull/844

@garvan2021 made their first contribution in https://github.com/open-mmlab/mmocr/pull/814

Full Changelog: https://github.com/open-mmlab/mmocr/compare/v0.4.1...v0.5.0

23.7 v0.4.1 (27/01/2022)

23.7.1 Highlights

L.
2.

Visualizing edge weights in OpenSet KIE is now supported! https://github.com/open-mmlab/mmocr/pull/677

Some configurations have been optimized to significantly speed up the training and testing processes! Don’t
worry - you can still tune these parameters in case these modifications do not work. https://github.com/open-
mmlab/mmocr/pull/757

Now you can use CPU to train/debug your model! https://github.com/open-mmlab/mmocr/pull/752

We have fixed a severe bug that causes users unable to call mmocr.apis.test with our pre-built wheels.
https://github.com/open-mmlab/mmocr/pull/667
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23.7.2 New Features & Enhancements

Show edge score for openset kie by @cuhk-hbsun in https://github.com/open-mmlab/mmoct/pull/677

Download flake8 from github as pre-commit hooks by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/695

Deprecate the support for ‘python setup.py test by @Harold-lkk in https://github.com/open-
mmlab/mmocr/pull/722

Disable multi-processing feature of cv2 to speed up data loading by @ gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/721

Extend ctwl500 converter to support text fields by @Harold-lkk in https://github.com/open-
mmlab/mmocrt/pull/729

Extend totaltext converter to support text fields by @Harold-Ikk in https://github.com/open-
mmlab/mmocr/pull/728

Speed up training by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/739

Add setup multi-processing both in train and test.py by @Harold-Ikk in https://github.com/open-
mmlab/mmocr/pull/757

Support CPU training/testing by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/752

Support specify gpu for testing and training with gpu-id instead of gpu-ids and gpus by @Harold-1kk in
https://github.com/open-mmlab/mmocr/pull/756

Remove unnecessary custom_import from test.py by @Harold-lkk in https://github.com/open-
mmlab/mmocr/pull/758

23.7.3 Bug Fixes

Fix satrn onnxruntime test by @ AllentDan in https://github.com/open-mmlab/mmocr/pull/679

Support both ConcatDataset and UniformConcatDataset by @cuhk-hbsun in https://github.com/open-
mmlab/mmocr/pull/675

Fix bugs of show_results in single_gpu_test by @cuhk-hbsun in https://github.com/open-mmlab/mmocr/pull/667
Fix a bug for sar decoder when bi-rnn is used by @MhLiao in https://github.com/open-mmlab/mmocr/pull/690
Fix opencv version to avoid some bugs by @ gaotongxiao in https://github.com/open-mmlab/mmoct/pull/694
Fix py39 ci error by @Harold-1kk in https://github.com/open-mmlab/mmocr/pull/707

Update visualize.py by @ TommyZihao in https://github.com/open-mmlab/mmocr/pull/715

Fix link of config by @cuhk-hbsun in https://github.com/open-mmlab/mmocr/pull/726

Use yaml.safe_load instead of load by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/753

Add necessary keys to test_pipelines to enable test-time visualization by @gaotongxiao in
https://github.com/open-mmlab/mmocr/pull/754
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23.7.4 Docs

* Fix recog.md by @gaotongxiao in https://github.com/open-mmlab/mmoct/pull/674
* Add config tutorial by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/683

e Add MMSelfSup/MMRazor/MMDeploy in readme by @cuhk-hbsun in https:/github.com/open-
mmlab/mmocr/pull/692

* Add recog & det model summary by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/693

» Update docs link by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/710

¢ add pull request template.md by @Harold-1kk in https://github.com/open-mmlab/mmoct/pull/711

» Add website links to readme by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/731

* update readme according to standard by @Harold-lkk in https://github.com/open-mmlab/mmocr/pull/742

23.7.5 New Contributors

e @MhLiao made their first contribution in https://github.com/open-mmlab/mmoct/pull/690
* @TommyZihao made their first contribution in https://github.com/open-mmlab/mmocr/pull/715

Full Changelog: https://github.com/open-mmlab/mmocr/compare/v0.4.0...v0.4.1

23.8 v0.4.0 (15/12/2021)

23.8.1 Highlights

1. We release a new text recognition model - ABINet (CVPR 2021, Oral). With it dedicated model design and
useful data augmentation transforms, ABINet can achieve the best performance on irregular text recognition
tasks. Check it out!

2. We are also working hard to fulfill the requests from our community. OpenSet KIE is one of the achievement,
which extends the application of SDMGR from text node classification to node-pair relation extraction. We also
provide a demo script to convert WildReceipt to open set domain, though it cannot take the full advantage of
OpenSet format. For more information, please read our tutorial.

3. APIs of models can be exposed through TorchServe. Docs

23.8.2 Breaking Changes & Migration Guide
Postprocessor

Some refactoring processes are still going on. For all text detection models, we unified their decode implementations
into a new module category, POSTPROCESSOR, which is responsible for decoding different raw outputs into bound-
ary instances. In all text detection configs, the text_repr_type argument in bbox_head is deprecated and will be
removed in the future release.

Migration Guide: Find a similar line from detection model’s config:

text_repr_type=xxx,

And replace it with
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postprocessor=dict(type=" Postprocessor', text_repr_type=xxx)),

Take a snippet of PANet’s config as an example. Before the change, its config for bbox_head looks like:

bbox_head=dict(
type="PANHead',
text_repr_type='poly"',
in_channels=[128, 128, 128, 128],
out_channels=6,
loss=dict(type="PANLoss"')),

Afterwards:

bbox_head=dict(

type="'PANHead',

in_channels=[128, 128, 128, 128],

out_channels=6,

loss=dict(type="PANLoss'),
postprocessor=dict(type='PANPostprocessor', text_repr_type='poly')),

There are other postprocessors and each takes different arguments. Interested users can find their interfaces or imple-
mentations in mmocr/models/textdet/postprocess or through our api docs.

New Config Structure

We reorganized the configs/ directory by extracting reusable sections into configs/_base_. Now the directory tree
of configs/_base_ is organized as follows:

_base_

— det_datasets
— det_models

— det_pipelines
— recog_datasets
— recog_models
— recog_pipelines
L— schedules

Most of model configs are making full use of base configs now, which makes the overall structural clearer and facilitates
fair comparison across models. Despite the seemingly significant hierarchical difference, these changes would not
break the backward compatibility as the names of model configs remain the same.

23.8.3 New Features

* Support openset kie by @cuhk-hbsun in https://github.com/open-mmlab/mmocr/pull/498

* Add converter for the Open Images v5 text annotations by Krylov et al. by @baudm in https://github.com/open-
mmlab/mmocrt/pull/497

 Support Chinese for kie show result by @cuhk-hbsun in https://github.com/open-mmlab/mmoct/pull/464

e Add TorchServe support for text detection and recognition by @Harold-lkk in https://github.com/open-
mmlab/mmocr/pull/522

 Save filename in text detection test results by @cuhk-hbsun in https://github.com/open-mmlab/mmoct/pull/570
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e Add codespell pre-commit hook and fix typos by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/520

* Avoid duplicate placeholder docs in CN by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/582
* Save results to json file for kie. by @cuhk-hbsun in https://github.com/open-mmlab/mmocr/pull/589

* Add SAR_CN to ocr.py by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/579

* mim extension for windows by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/641

e Support muitiple pipelines for different datasets by @cuhk-hbsun in https://github.com/open-
mmlab/mmocr/pull/657

* ABINet Framework by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/651

23.8.4 Refactoring

» Refactor textrecog config structure by @cuhk-hbsun in https://github.com/open-mmlab/mmoct/pull/617
* Refactor text detection config by @cuhk-hbsun in https://github.com/open-mmlab/mmocr/pull/626
* refactor transformer modules by @cuhk-hbsun in https://github.com/open-mmlab/mmocr/pull/618

* refactor textdet postprocess by @cuhk-hbsun in https://github.com/open-mmlab/mmocrt/pull/640

23.8.5 Docs

* C++ example section by @apiaccess21 in https://github.com/open-mmlab/mmocr/pull/593
« install.md Chinese section by @ A465539338 in https://github.com/open-mmlab/mmocr/pull/364

e Add Chinese Translation of deployment.md. by @fatfishZhao in https://github.com/open-
mmlab/mmocrt/pull/506

e Fix a model link and add the metafile for SATRN by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/473

* Improve docs style by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/474

* Enhancement & sync Chinese docs by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/492

» TorchServe docs by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/539

 Update docs menu by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/564

* Docs for KIE CloseSet & OpenSet by @ gaotongxiao in https://github.com/open-mmlab/mmoct/pull/573

* Fix broken links by @ gaotongxiao in https://github.com/open-mmlab/mmoct/pull/576

* Docstring for text recognition models by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/562
* Add MMFlow & MIM by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/597

* Add MMFewShot by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/621

» Update model readme by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/604

* Add input size check to model_inference by @mpena-vina in https://github.com/open-mmlab/mmocr/pull/633
* Docstring for textdet models by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/561

* Add MMHuman3D in readme by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/644

 Use shared menu from theme instead by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/655

23.8. v0.4.0 (15/12/2021) 159



MMOCR, Release 0.6.3

 Refactor docs structure by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/662

* Docs fix by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/664

23.8.6 Enhancements

Use bounding box around polygon instead of within polygon by @alexander-soare in https://github.com/open-
mmlab/mmoct/pull/469

Add CITATION.cff by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/476
Add py3.9 CI by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/475

update model-index.yml by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/484
Use container in CI by @ gaotongxiao in https://github.com/open-mmlab/mmoct/pull/502
CircleCI Setup by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/611

Remove unnecessary custom_import from train.py by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/603

Change the upper version of mmcv to 1.5.0 by @zhouzaida in https://github.com/open-mmlab/mmoct/pull/628
Update CircleCI by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/631
Pass custom_hooks to MMCV by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/609

Skip CI when some specific files were changed by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/642

Add markdown linter in pre-commit hook by @ gaotongxiao in https://github.com/open-mmlab/mmocrt/pull/643
Use shape from loaded image by @cuhk-hbsun in https://github.com/open-mmlab/mmoct/pull/652

Cancel previous runs that are not completed by @Harold-1kk in https://github.com/open-mmlab/mmoct/pull/666

23.8.7 Bug Fixes

13 (L)

Modify algorithm “sar” weights path in metafile by @ShoupingShan in https://github.com/open-
mmlab/mmocr/pull/581

Fix Cuda CI by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/472
Fix image export in test.py for KIE models by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/486

Allow invalid polygons in intersection and union by default by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/471

Update checkpoints’ links for SATRN by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/518

Fix converting to onnx bug because of changing key from img_shape to resize_shape by @Harold-lkk in
https://github.com/open-mmlab/mmocr/pull/523

Fix PyTorch 1.6 incompatible checkpoints by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/540
Fix paper field in metafiles by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/550

Unify recognition task names in metafiles by @ gaotongxiao in https://github.com/open-mmlab/mmocr/pull/548
Fix py3.9 CI by @gaotongxiao in https://github.com/open-mmlab/mmoct/pull/563

Always map location to cpu when loading checkpoint by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/567
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Fix wrong model builder in recog_test_ imgs by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/574

Improve dbnet r50 by fixing img std by @gaotongxiao in https://github.com/open-mmlab/mmoct/pull/578
Fix resource warning: unclosed file by @cuhk-hbsun in https://github.com/open-mmlab/mmocr/pull/577

Fix bug that same start_point for different texts in draw_texts_by_pil by @cuhk-hbsun in https://github.com/open-
mmlab/mmocr/pull/587

Keep original texts for kie by @cuhk-hbsun in https://github.com/open-mmlab/mmocr/pull/588

Fix random seed by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/600

Fix DBNet_r50 config by @gaotongxiao in https://github.com/open-mmlab/mmocr/pull/625
Change SBC case to DBC case by @cuhk-hbsun in https://github.com/open-mmlab/mmocr/pull/632
Fix kie demo by @innerlee in https://github.com/open-mmlab/mmocr/pull/610

fix type check by @cuhk-hbsun in https://github.com/open-mmlab/mmoct/pull/650

Remove depreciated image validator in totaltext converter by @gaotongxiao in https://github.com/open-
mmlab/mmocr/pull/661

Fix change locals() dict by @Fei-Wang in https://github.com/open-mmlab/mmocr/pull/663
fix #614: textsnake targets by @HolyCrap96 in https://github.com/open-mmlab/mmocr/pull/660

23.8.8 New Contributors

@alexander-soare made their first contribution in https://github.com/open-mmlab/mmoct/pull/469
@A465539338 made their first contribution in https://github.com/open-mmlab/mmocr/pull/364
@fatfishZhao made their first contribution in https://github.com/open-mmlab/mmoct/pull/506
@baudm made their first contribution in https://github.com/open-mmlab/mmocr/pull/497
@ShoupingShan made their first contribution in https://github.com/open-mmlab/mmocr/pull/581
@apiaccess21 made their first contribution in https://github.com/open-mmlab/mmocr/pull/593
@zhouzaida made their first contribution in https://github.com/open-mmlab/mmocr/pull/628
@mpena-vina made their first contribution in https://github.com/open-mmlab/mmocr/pull/633

@Fei-Wang made their first contribution in https://github.com/open-mmlab/mmocr/pull/663

Full Changelog: https://github.com/open-mmlab/mmocr/compare/v0.3.0...0.4.0

23.9 v0.3.0 (25/8/2021)

23.9.1 Highlights

1.

We add a new text recognition model — SATRN! Its pretrained checkpoint achieves the best performance over
other provided text recognition models. A lighter version of SATRN is also released which can obtain ~98% of
the performance of the original model with only 45 MB in size. (@2793145003) #405

Improve the demo script, ocr.py, which supports applying end-to-end text detection, text recognition and key
information extraction models on images with easy-to-use commands. Users can find its full documentation in
the demo section. (@samayala22, @manjrekarom) #371, #386, #400, #374, #428
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3. Our documentation is reorganized into a clearer structure. More useful contents are on the way! #409, #454

4. The requirement of Polygon3 is removed since this project is no longer maintained or distributed. We unified
all its references to equivalent substitutions in shapely instead. #448

23.9.2 Breaking Changes & Migration Guide

1. Upgrade version requirement of MMDetection to 2.14.0 to avoid bugs #382

2. MMOCR now has its own model and layer registries inherited from MMDetection’s or MMCV’s counterparts.
(#436) The modified hierarchical structure of the model registries are now organized as follows.

mmcv.MODELS -> mmdet.BACKBONES -> BACKBONES
mmcv.MODELS -> mmdet.NECKS -> NECKS

mmcv.MODELS -> mmdet.ROI_EXTRACTORS -> ROI_EXTRACTORS
mmcv.MODELS -> mmdet.HEADS -> HEADS

mmcv.MODELS -> mmdet.LOSSES -> LOSSES

mmcv.MODELS -> mmdet.DETECTORS -> DETECTORS

mmcv .ACTIVATION_LAYERS -> ACTIVATION_LAYERS

mmcv . UPSAMPLE_LAYERS -> UPSAMPLE_LAYERS

To migrate your old implementation to our new backend, you need to change the import path of any registries and their
corresponding builder functions (including build_detectors) from mmdet.models.builder to mmocr.models.
builder. If you have referred to any model or layer of MMDetection or MMCYV in your model config, you need to
add mmdet . or mmcv. prefix to its name to inform the model builder of the right namespace to work on.

Interested users may check out MMCV’s tutorial on Registry for in-depth explanations on its mechanism.

23.9.3 New Features

* Automatically replace SyncBN with BN for inference #420, #453
* Support batch inference for CRNN and SegOCR #407
 Support exporting documentation in pdf or epub format #406

* Support persistent_workers option in data loader #459

23.9.4 Bug Fixes

* Remove depreciated key in kie_test_imgs.py #381

* Fix dimension mismatch in batch testing/inference of DBNet #383

* Fix the problem of dice loss which stays at 1 with an empty target given #408
* Fix a wrong link in ocr.py (@naarkhoo) #417

* Fix undesired assignment to “pretrained” in test.py #418

* Fix a problem in polygon generation of DBNet #421, #443

 Skip invalid annotations in totaltext_converter #438

* Add zero division handler in poly utils, remove Polygon3 #448

162 Chapter 23. Changelog



https://github.com/open-mmlab/mmocr/pull/409
https://github.com/open-mmlab/mmocr/pull/454
https://github.com/open-mmlab/mmocr/pull/448
https://github.com/open-mmlab/mmocr/pull/382
https://github.com/open-mmlab/mmocr/pull/436
https://mmcv.readthedocs.io/en/latest/understand_mmcv/registry.html
https://github.com/open-mmlab/mmocr/pull/420
https://github.com/open-mmlab/mmocr/pull/453
https://github.com/open-mmlab/mmocr/pull/407
https://github.com/open-mmlab/mmocr/pull/406
https://github.com/open-mmlab/mmocr/pull/459
https://github.com/open-mmlab/mmocr/pull/381
https://github.com/open-mmlab/mmocr/pull/383
https://github.com/open-mmlab/mmocr/pull/408
https://github.com/naarkhoo
https://github.com/open-mmlab/mmocr/pull/417
https://github.com/open-mmlab/mmocr/pull/418
https://github.com/open-mmlab/mmocr/pull/421
https://github.com/open-mmlab/mmocr/pull/443
https://github.com/open-mmlab/mmocr/pull/438
https://github.com/open-mmlab/mmocr/pull/448

MMOCR, Release 0.6.3

23.9.5 Improvements
* Replace lanms-proper with lanms-neo to support installation on Windows (with special thanks to @gen-ko who
has re-distributed this package!)
* Support MIM #394
* Add tests for PyTorch 1.9 in CI #401
* Enables fullscreen layout in readthedocs #413
* General documentation enhancement #395
 Update version checker #427
* Add copyright info #439

 Update citation information #440

23.9.6 Contributors

We thank @2793145003, @samayala22, @manjrekarom, @naarkhoo, @ gen-ko, @duanjiaqi, @gaotongxiao, @cuhk-
hbsun, @innerlee, @wdsd641417025 for their contribution to this release!

23.10 v0.2.1 (20/7/2021)

23.10.1 Highlights

1. Upgrade to use MMCV-full >= 1.3.8 and MMDetection >= 2.13.0 for latest features

2. Add ONNX and TensorRT export tool, supporting the deployment of DBNet, PSENet, PANet and CRNN (ex-
perimental) #278, #291, #300, #328

3. Unified parameter initialization method which uses init_cfg in config files #365

23.10.2 New Features

* Support TextOCR dataset #293
* Support Total-Text dataset #2606, #273, #357
* Support grouping text detection box into lines #290, #304

* Add benchmark_processing script that benchmarks data loading process #261

Add SynthText preprocessor for text recognition models #351, #3061
* Support batch inference during testing #310
* Add user-friendly OCR inference script #366
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23.10.3 Bug Fixes

» Fix improper class ignorance in SDMGR Loss #221

* Fix potential numerical zero division error in DRRG #224

* Fix installing requirements with pip and mim #242

* Fix dynamic input error of DBNet #269

* Fix space parsing error in LineStrParser #285

* Fix textsnake decode error #2064

* Correct isort setup #288

* Fix a bug in SDMGR config #316

* Fix kie_test_img for KIE nonvisual #319

* Fix metafiles #342

* Fix different device problem in FCENet #334

* Ignore improper tailing empty characters in annotation files #358
* Docs fixes #247, #255, #2065, #267, #268, #270, #276, #287, #330, #355, #367
* Fix NRTR config #356, #370

23.10.4 Improvements

* Add backend for resizeocr #244

 Skip image processing pipelines in SDMGR novisual #260
* Speedup DBNet #263

» Update mmcv installation method in workflow #323

* Add part of Chinese documentations #353, #362

* Add support for ConcatDataset with two workflows #348
e Add list_from_file and list_to_file utils #226

* Speed up sort_vertex #239

* Support distributed evaluation of KIE #234

* Add pretrained FCENet on IC15 #258

* Support CPU for OCR demo #227

* Avoid extra image pre-processing steps #375
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23.11 v0.2.0 (18/5/2021)

23.11.1 Highlights

1. Add the NER approach Bert-softmax (NAACL2019)
Add the text detection method DRRG (CVPR’2020)
Add the text detection method FCENet (CVPR’2021)

Increase the ease of use via adding text detection and recognition end-to-end demo, and colab online demo.

A

Simplify the installation.

23.11.2 New Features

* Add Bert-softmax for Ner task #148

* Add DRRG #189

e Add FCENet #133

¢ Add end-to-end demo #105

* Support batch inference #86 #87 #178

* Add TPS preprocessor for text recognition #117 #135
* Add demo documentation #151 #166 #168 #170 #171
* Add checkpoint for Chinese recognition #156

o Add metafile #175 #176 #177 #182 #183

* Add support for numpy array inference #74

23.11.3 Bug Fixes

* Fix the duplicated point bug due to transform for textsnake #130
* Fix CTC loss NaN #159

* Fix error raised if result is empty in demo #144

* Fix results missing if one image has a large number of boxes #98

* Fix package missing in dockerfile #109

23.11.4 Improvements

» Simplify installation procedure via removing compiling #188
* Speed up panet post processing so that it can detect dense texts #188

Add zh-CN README #70 #95

* Support windows #89
Add Colab #147 #199

¢ Add 1-step installation using conda environment #193 #194 #195
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23.12 v0.1.0 (7/4/2021)

23.12.1 Highlights

¢ MMOCR is released.

23.12.2 Main Features

 Support text detection, text recognition and the corresponding downstream tasks such as key information extrac-
tion.

* For text detection, support both single-step (PSENet, PANet, DBNet, TextSnake) and two-step (MaskRCNN)
methods.

* For text recognition, support CTC-loss based method CRNN; Encoder-decoder (with attention) based methods
SAR, Robustscanner; Segmentation based method SegOCR; Transformer based method NRTR.

* For key information extraction, support GCN based method SDMG-R.

* Provide checkpoints and log files for all of the methods above.
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WELCOME TO THE OPENMMLAB COMMUNITY

Scan the QR code below to follow the OpenMMLab team’s Zhihu Official Account and join the OpenMMLab team’s
QQ Group, or join the official communication WeChat group by adding the WeChat, or join our Slack

We will provide you with the OpenMMLab community

share the latest core technologies of Al frameworks

Explaining PyTorch common module source Code

News related to the release of OpenMMLab

Introduction of cutting-edge algorithms developed by OpenMMLab Get the more efficient answer and feedback

Provide a platform for communication with developers from all walks of life

The OpenMMLab community looks forward to your participation!
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