Shortcuts

Source code for mmocr.models.textrecog.decoders.position_attention_decoder

# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Dict, Optional, Sequence, Union

import torch
import torch.nn as nn

from mmocr.models.common.dictionary import Dictionary
from mmocr.models.textrecog.layers import (DotProductAttentionLayer,
                                           PositionAwareLayer)
from mmocr.registry import MODELS
from mmocr.structures import TextRecogDataSample
from .base import BaseDecoder


[docs]@MODELS.register_module() class PositionAttentionDecoder(BaseDecoder): """Position attention decoder for RobustScanner. RobustScanner: `RobustScanner: Dynamically Enhancing Positional Clues for Robust Text Recognition <https://arxiv.org/abs/2007.07542>`_ Args: dictionary (dict or :obj:`Dictionary`): The config for `Dictionary` or the instance of `Dictionary`. module_loss (dict, optional): Config to build module_loss. Defaults to None. postprocessor (dict, optional): Config to build postprocessor. Defaults to None. rnn_layers (int): Number of RNN layers. Defaults to 2. dim_input (int): Dimension :math:`D_i` of input vector ``feat``. Defaults to 512. dim_model (int): Dimension :math:`D_m` of the model. Should also be the same as encoder output vector ``out_enc``. Defaults to 128. max_seq_len (int): Maximum output sequence length :math:`T`. Defaults to 40. mask (bool): Whether to mask input features according to ``img_meta['valid_ratio']``. Defaults to True. return_feature (bool): Return feature or logits as the result. Defaults to True. encode_value (bool): Whether to use the output of encoder ``out_enc`` as `value` of attention layer. If False, the original feature ``feat`` will be used. Defaults to False. init_cfg (dict or list[dict], optional): Initialization configs. Defaults to None. """ def __init__(self, dictionary: Union[Dictionary, Dict], module_loss: Optional[Dict] = None, postprocessor: Optional[Dict] = None, rnn_layers: int = 2, dim_input: int = 512, dim_model: int = 128, max_seq_len: int = 40, mask: bool = True, return_feature: bool = True, encode_value: bool = False, init_cfg: Optional[Union[Dict, Sequence[Dict]]] = None) -> None: super().__init__( dictionary=dictionary, module_loss=module_loss, postprocessor=postprocessor, max_seq_len=max_seq_len, init_cfg=init_cfg) self.dim_input = dim_input self.dim_model = dim_model self.return_feature = return_feature self.encode_value = encode_value self.mask = mask self.embedding = nn.Embedding(self.max_seq_len + 1, self.dim_model) self.position_aware_module = PositionAwareLayer( self.dim_model, rnn_layers) self.attention_layer = DotProductAttentionLayer() self.prediction = None if not self.return_feature: self.prediction = nn.Linear( dim_model if encode_value else dim_input, self.dictionary.num_classes) self.softmax = nn.Softmax(dim=-1) def _get_position_index(self, length: int, batch_size: int, device: Optional[torch.device] = None ) -> torch.Tensor: """Get position index for position attention. Args: length (int): Length of the sequence. batch_size (int): Batch size. device (torch.device, optional): Device. Defaults to None. Returns: torch.Tensor: Position index. """ position_index = torch.arange(0, length, device=device) position_index = position_index.repeat([batch_size, 1]) position_index = position_index.long() return position_index
[docs] def forward_train(self, feat: torch.Tensor, out_enc: torch.Tensor, data_samples: Sequence[TextRecogDataSample] ) -> torch.Tensor: """ Args: feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`. out_enc (Tensor): Encoder output of shape :math:`(N, D_m, H, W)`. data_samples (list[TextRecogDataSample], optional): Batch of TextRecogDataSample, containing gt_text information. Defaults to None. Returns: Tensor: A raw logit tensor of shape :math:`(N, T, C)` if ``return_feature=False``. Otherwise it will be the hidden feature before the prediction projection layer, whose shape is :math:`(N, T, D_m)`. """ valid_ratios = [ data_sample.get('valid_ratio', 1.0) for data_sample in data_samples ] if self.mask else None # n, c_enc, h, w = out_enc.size() assert c_enc == self.dim_model _, c_feat, _, _ = feat.size() assert c_feat == self.dim_input position_index = self._get_position_index(self.max_seq_len, n, feat.device) position_out_enc = self.position_aware_module(out_enc) query = self.embedding(position_index) query = query.permute(0, 2, 1).contiguous() key = position_out_enc.view(n, c_enc, h * w) if self.encode_value: value = out_enc.view(n, c_enc, h * w) else: value = feat.view(n, c_feat, h * w) mask = None if valid_ratios is not None: mask = query.new_zeros((n, h, w)) for i, valid_ratio in enumerate(valid_ratios): valid_width = min(w, math.ceil(w * valid_ratio)) mask[i, :, valid_width:] = 1 mask = mask.bool() mask = mask.view(n, h * w) attn_out = self.attention_layer(query, key, value, mask) attn_out = attn_out.permute(0, 2, 1).contiguous() # [n, max_seq_len, dim_v] if self.return_feature: return attn_out return self.prediction(attn_out)
[docs] def forward_test(self, feat: torch.Tensor, out_enc: torch.Tensor, img_metas: Sequence[TextRecogDataSample]) -> torch.Tensor: """ Args: feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`. out_enc (Tensor): Encoder output of shape :math:`(N, D_m, H, W)`. data_samples (list[TextRecogDataSample], optional): Batch of TextRecogDataSample, containing gt_text information. Defaults to None. Returns: Tensor: Character probabilities of shape :math:`(N, T, C)` if ``return_feature=False``. Otherwise it would be the hidden feature before the prediction projection layer, whose shape is :math:`(N, T, D_m)`. """ valid_ratios = [ img_meta.get('valid_ratio', 1.0) for img_meta in img_metas ] if self.mask else None seq_len = self.max_seq_len n, c_enc, h, w = out_enc.size() assert c_enc == self.dim_model _, c_feat, _, _ = feat.size() assert c_feat == self.dim_input position_index = self._get_position_index(seq_len, n, feat.device) position_out_enc = self.position_aware_module(out_enc) query = self.embedding(position_index) query = query.permute(0, 2, 1).contiguous() key = position_out_enc.view(n, c_enc, h * w) if self.encode_value: value = out_enc.view(n, c_enc, h * w) else: value = feat.view(n, c_feat, h * w) mask = None if valid_ratios is not None: mask = query.new_zeros((n, h, w)) for i, valid_ratio in enumerate(valid_ratios): valid_width = min(w, math.ceil(w * valid_ratio)) mask[i, :, valid_width:] = 1 mask = mask.bool() mask = mask.view(n, h * w) attn_out = self.attention_layer(query, key, value, mask) attn_out = attn_out.permute(0, 2, 1).contiguous() if self.return_feature: return attn_out return self.softmax(self.prediction(attn_out))
Read the Docs v: latest
Versions
latest
stable
v1.0.1
v1.0.0
0.x
v0.6.3
v0.6.2
v0.6.1
v0.6.0
v0.5.0
v0.4.1
v0.4.0
v0.3.0
v0.2.1
v0.2.0
v0.1.0
dev-1.x
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.