Shortcuts

Source code for mmocr.models.textdet.losses.drrg_loss

# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn.functional as F
from mmdet.core import BitmapMasks
from torch import nn

from mmocr.models.builder import LOSSES
from mmocr.utils import check_argument


[docs]@LOSSES.register_module() class DRRGLoss(nn.Module): """The class for implementing DRRG loss. This is partially adapted from https://github.com/GXYM/DRRG licensed under the MIT license. DRRG: `Deep Relational Reasoning Graph Network for Arbitrary Shape Text Detection <https://arxiv.org/abs/1908.05900>`_. Args: ohem_ratio (float): The negative/positive ratio in ohem. """ def __init__(self, ohem_ratio=3.0): super().__init__() self.ohem_ratio = ohem_ratio
[docs] def balance_bce_loss(self, pred, gt, mask): """Balanced Binary-CrossEntropy Loss. Args: pred (Tensor): Shape of :math:`(1, H, W)`. gt (Tensor): Shape of :math:`(1, H, W)`. mask (Tensor): Shape of :math:`(1, H, W)`. Returns: Tensor: Balanced bce loss. """ assert pred.shape == gt.shape == mask.shape assert torch.all(pred >= 0) and torch.all(pred <= 1) assert torch.all(gt >= 0) and torch.all(gt <= 1) positive = gt * mask negative = (1 - gt) * mask positive_count = int(positive.float().sum()) gt = gt.float() if positive_count > 0: loss = F.binary_cross_entropy(pred, gt, reduction='none') positive_loss = torch.sum(loss * positive.float()) negative_loss = loss * negative.float() negative_count = min( int(negative.float().sum()), int(positive_count * self.ohem_ratio)) else: positive_loss = torch.tensor(0.0, device=pred.device) loss = F.binary_cross_entropy(pred, gt, reduction='none') negative_loss = loss * negative.float() negative_count = 100 negative_loss, _ = torch.topk(negative_loss.view(-1), negative_count) balance_loss = (positive_loss + torch.sum(negative_loss)) / ( float(positive_count + negative_count) + 1e-5) return balance_loss
[docs] def gcn_loss(self, gcn_data): """CrossEntropy Loss from gcn module. Args: gcn_data (tuple(Tensor, Tensor)): The first is the prediction with shape :math:`(N, 2)` and the second is the gt label with shape :math:`(m, n)` where :math:`m * n = N`. Returns: Tensor: CrossEntropy loss. """ gcn_pred, gt_labels = gcn_data gt_labels = gt_labels.view(-1).to(gcn_pred.device) loss = F.cross_entropy(gcn_pred, gt_labels) return loss
[docs] def bitmasks2tensor(self, bitmasks, target_sz): """Convert Bitmasks to tensor. Args: bitmasks (list[BitmapMasks]): The BitmapMasks list. Each item is for one img. target_sz (tuple(int, int)): The target tensor of size :math:`(H, W)`. Returns: list[Tensor]: The list of kernel tensors. Each element stands for one kernel level. """ assert check_argument.is_type_list(bitmasks, BitmapMasks) assert isinstance(target_sz, tuple) batch_size = len(bitmasks) num_masks = len(bitmasks[0]) results = [] for level_inx in range(num_masks): kernel = [] for batch_inx in range(batch_size): mask = torch.from_numpy(bitmasks[batch_inx].masks[level_inx]) # hxw mask_sz = mask.shape # left, right, top, bottom pad = [ 0, target_sz[1] - mask_sz[1], 0, target_sz[0] - mask_sz[0] ] mask = F.pad(mask, pad, mode='constant', value=0) kernel.append(mask) kernel = torch.stack(kernel) results.append(kernel) return results
[docs] def forward(self, preds, downsample_ratio, gt_text_mask, gt_center_region_mask, gt_mask, gt_top_height_map, gt_bot_height_map, gt_sin_map, gt_cos_map): """Compute Drrg loss. Args: preds (tuple(Tensor)): The first is the prediction map with shape :math:`(N, C_{out}, H, W)`. The second is prediction from GCN module, with shape :math:`(N, 2)`. The third is ground-truth label with shape :math:`(N, 8)`. downsample_ratio (float): The downsample ratio. gt_text_mask (list[BitmapMasks]): Text mask. gt_center_region_mask (list[BitmapMasks]): Center region mask. gt_mask (list[BitmapMasks]): Effective mask. gt_top_height_map (list[BitmapMasks]): Top height map. gt_bot_height_map (list[BitmapMasks]): Bottom height map. gt_sin_map (list[BitmapMasks]): Sinusoid map. gt_cos_map (list[BitmapMasks]): Cosine map. Returns: dict: A loss dict with ``loss_text``, ``loss_center``, ``loss_height``, ``loss_sin``, ``loss_cos``, and ``loss_gcn``. """ assert isinstance(preds, tuple) assert isinstance(downsample_ratio, float) assert check_argument.is_type_list(gt_text_mask, BitmapMasks) assert check_argument.is_type_list(gt_center_region_mask, BitmapMasks) assert check_argument.is_type_list(gt_mask, BitmapMasks) assert check_argument.is_type_list(gt_top_height_map, BitmapMasks) assert check_argument.is_type_list(gt_bot_height_map, BitmapMasks) assert check_argument.is_type_list(gt_sin_map, BitmapMasks) assert check_argument.is_type_list(gt_cos_map, BitmapMasks) pred_maps, gcn_data = preds pred_text_region = pred_maps[:, 0, :, :] pred_center_region = pred_maps[:, 1, :, :] pred_sin_map = pred_maps[:, 2, :, :] pred_cos_map = pred_maps[:, 3, :, :] pred_top_height_map = pred_maps[:, 4, :, :] pred_bot_height_map = pred_maps[:, 5, :, :] feature_sz = pred_maps.size() device = pred_maps.device # bitmask 2 tensor mapping = { 'gt_text_mask': gt_text_mask, 'gt_center_region_mask': gt_center_region_mask, 'gt_mask': gt_mask, 'gt_top_height_map': gt_top_height_map, 'gt_bot_height_map': gt_bot_height_map, 'gt_sin_map': gt_sin_map, 'gt_cos_map': gt_cos_map } gt = {} for key, value in mapping.items(): gt[key] = value if abs(downsample_ratio - 1.0) < 1e-2: gt[key] = self.bitmasks2tensor(gt[key], feature_sz[2:]) else: gt[key] = [item.rescale(downsample_ratio) for item in gt[key]] gt[key] = self.bitmasks2tensor(gt[key], feature_sz[2:]) if key in ['gt_top_height_map', 'gt_bot_height_map']: gt[key] = [item * downsample_ratio for item in gt[key]] gt[key] = [item.to(device) for item in gt[key]] scale = torch.sqrt(1.0 / (pred_sin_map**2 + pred_cos_map**2 + 1e-8)) pred_sin_map = pred_sin_map * scale pred_cos_map = pred_cos_map * scale loss_text = self.balance_bce_loss( torch.sigmoid(pred_text_region), gt['gt_text_mask'][0], gt['gt_mask'][0]) text_mask = (gt['gt_text_mask'][0] * gt['gt_mask'][0]).float() negative_text_mask = ((1 - gt['gt_text_mask'][0]) * gt['gt_mask'][0]).float() loss_center_map = F.binary_cross_entropy( torch.sigmoid(pred_center_region), gt['gt_center_region_mask'][0].float(), reduction='none') if int(text_mask.sum()) > 0: loss_center_positive = torch.sum( loss_center_map * text_mask) / torch.sum(text_mask) else: loss_center_positive = torch.tensor(0.0, device=device) loss_center_negative = torch.sum( loss_center_map * negative_text_mask) / torch.sum(negative_text_mask) loss_center = loss_center_positive + 0.5 * loss_center_negative center_mask = (gt['gt_center_region_mask'][0] * gt['gt_mask'][0]).float() if int(center_mask.sum()) > 0: map_sz = pred_top_height_map.size() ones = torch.ones(map_sz, dtype=torch.float, device=device) loss_top = F.smooth_l1_loss( pred_top_height_map / (gt['gt_top_height_map'][0] + 1e-2), ones, reduction='none') loss_bot = F.smooth_l1_loss( pred_bot_height_map / (gt['gt_bot_height_map'][0] + 1e-2), ones, reduction='none') gt_height = ( gt['gt_top_height_map'][0] + gt['gt_bot_height_map'][0]) loss_height = torch.sum( (torch.log(gt_height + 1) * (loss_top + loss_bot)) * center_mask) / torch.sum(center_mask) loss_sin = torch.sum( F.smooth_l1_loss( pred_sin_map, gt['gt_sin_map'][0], reduction='none') * center_mask) / torch.sum(center_mask) loss_cos = torch.sum( F.smooth_l1_loss( pred_cos_map, gt['gt_cos_map'][0], reduction='none') * center_mask) / torch.sum(center_mask) else: loss_height = torch.tensor(0.0, device=device) loss_sin = torch.tensor(0.0, device=device) loss_cos = torch.tensor(0.0, device=device) loss_gcn = self.gcn_loss(gcn_data) results = dict( loss_text=loss_text, loss_center=loss_center, loss_height=loss_height, loss_sin=loss_sin, loss_cos=loss_cos, loss_gcn=loss_gcn) return results
Read the Docs v: v0.4.0
Versions
latest
stable
v0.4.0
v0.3.0
v0.2.1
v0.2.0
v0.1.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.