Shortcuts

Source code for mmocr.models.textrecog.preprocessor.tps_preprocessor

# Modified from https://github.com/clovaai/deep-text-recognition-benchmark
#
# Licensed under the Apache License, Version 2.0 (the "License");s
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from mmocr.models.builder import PREPROCESSOR
from .base_preprocessor import BasePreprocessor


[docs]@PREPROCESSOR.register_module() class TPSPreprocessor(BasePreprocessor): """Rectification Network of RARE, namely TPS based STN in https://arxiv.org/pdf/1603.03915.pdf. Args: num_fiducial (int): Number of fiducial points of TPS-STN. img_size (tuple(int, int)): Size :math:`(H, W)` of the input image. rectified_img_size (tuple(int, int)): Size :math:`(H_r, W_r)` of the rectified image. num_img_channel (int): Number of channels of the input image. init_cfg (dict or list[dict], optional): Initialization configs. """ def __init__(self, num_fiducial=20, img_size=(32, 100), rectified_img_size=(32, 100), num_img_channel=1, init_cfg=None): super().__init__(init_cfg=init_cfg) assert isinstance(num_fiducial, int) assert num_fiducial > 0 assert isinstance(img_size, tuple) assert isinstance(rectified_img_size, tuple) assert isinstance(num_img_channel, int) self.num_fiducial = num_fiducial self.img_size = img_size self.rectified_img_size = rectified_img_size self.num_img_channel = num_img_channel self.LocalizationNetwork = LocalizationNetwork(self.num_fiducial, self.num_img_channel) self.GridGenerator = GridGenerator(self.num_fiducial, self.rectified_img_size)
[docs] def forward(self, batch_img): """ Args: batch_img (Tensor): Images to be rectified with size :math:`(N, C, H, W)`. Returns: Tensor: Rectified image with size :math:`(N, C, H_r, W_r)`. """ batch_C_prime = self.LocalizationNetwork( batch_img) # batch_size x K x 2 build_P_prime = self.GridGenerator.build_P_prime( batch_C_prime, batch_img.device ) # batch_size x n (= rectified_img_width x rectified_img_height) x 2 build_P_prime_reshape = build_P_prime.reshape([ build_P_prime.size(0), self.rectified_img_size[0], self.rectified_img_size[1], 2 ]) batch_rectified_img = F.grid_sample( batch_img, build_P_prime_reshape, padding_mode='border', align_corners=True) return batch_rectified_img
class LocalizationNetwork(nn.Module): """Localization Network of RARE, which predicts C' (K x 2) from input (img_width x img_height) Args: num_fiducial (int): Number of fiducial points of TPS-STN. num_img_channel (int): Number of channels of the input image. """ def __init__(self, num_fiducial, num_img_channel): super().__init__() self.num_fiducial = num_fiducial self.num_img_channel = num_img_channel self.conv = nn.Sequential( nn.Conv2d( in_channels=self.num_img_channel, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(True), nn.MaxPool2d(2, 2), # batch_size x 64 x img_height/2 x img_width/2 nn.Conv2d(64, 128, 3, 1, 1, bias=False), nn.BatchNorm2d(128), nn.ReLU(True), nn.MaxPool2d(2, 2), # batch_size x 128 x img_h/4 x img_w/4 nn.Conv2d(128, 256, 3, 1, 1, bias=False), nn.BatchNorm2d(256), nn.ReLU(True), nn.MaxPool2d(2, 2), # batch_size x 256 x img_h/8 x img_w/8 nn.Conv2d(256, 512, 3, 1, 1, bias=False), nn.BatchNorm2d(512), nn.ReLU(True), nn.AdaptiveAvgPool2d(1) # batch_size x 512 ) self.localization_fc1 = nn.Sequential( nn.Linear(512, 256), nn.ReLU(True)) self.localization_fc2 = nn.Linear(256, self.num_fiducial * 2) # Init fc2 in LocalizationNetwork self.localization_fc2.weight.data.fill_(0) ctrl_pts_x = np.linspace(-1.0, 1.0, int(num_fiducial / 2)) ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(num_fiducial / 2)) ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(num_fiducial / 2)) ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0) self.localization_fc2.bias.data = torch.from_numpy( initial_bias).float().view(-1) def forward(self, batch_img): """ Args: batch_img (Tensor): Batch input image of shape :math:`(N, C, H, W)`. Returns: Tensor: Predicted coordinates of fiducial points for input batch. The shape is :math:`(N, F, 2)` where :math:`F` is ``num_fiducial``. """ batch_size = batch_img.size(0) features = self.conv(batch_img).view(batch_size, -1) batch_C_prime = self.localization_fc2( self.localization_fc1(features)).view(batch_size, self.num_fiducial, 2) return batch_C_prime class GridGenerator(nn.Module): """Grid Generator of RARE, which produces P_prime by multiplying T with P. Args: num_fiducial (int): Number of fiducial points of TPS-STN. rectified_img_size (tuple(int, int)): Size :math:`(H_r, W_r)` of the rectified image. """ def __init__(self, num_fiducial, rectified_img_size): """Generate P_hat and inv_delta_C for later.""" super().__init__() self.eps = 1e-6 self.rectified_img_height = rectified_img_size[0] self.rectified_img_width = rectified_img_size[1] self.num_fiducial = num_fiducial self.C = self._build_C(self.num_fiducial) # num_fiducial x 2 self.P = self._build_P(self.rectified_img_width, self.rectified_img_height) # for multi-gpu, you need register buffer self.register_buffer( 'inv_delta_C', torch.tensor(self._build_inv_delta_C( self.num_fiducial, self.C)).float()) # num_fiducial+3 x num_fiducial+3 self.register_buffer('P_hat', torch.tensor( self._build_P_hat( self.num_fiducial, self.C, self.P)).float()) # n x num_fiducial+3 # for fine-tuning with different image width, # you may use below instead of self.register_buffer # self.inv_delta_C = torch.tensor( # self._build_inv_delta_C( # self.num_fiducial, # self.C)).float().cuda() # num_fiducial+3 x num_fiducial+3 # self.P_hat = torch.tensor( # self._build_P_hat(self.num_fiducial, self.C, # self.P)).float().cuda() # n x num_fiducial+3 def _build_C(self, num_fiducial): """Return coordinates of fiducial points in rectified_img; C.""" ctrl_pts_x = np.linspace(-1.0, 1.0, int(num_fiducial / 2)) ctrl_pts_y_top = -1 * np.ones(int(num_fiducial / 2)) ctrl_pts_y_bottom = np.ones(int(num_fiducial / 2)) ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1) ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1) C = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0) return C # num_fiducial x 2 def _build_inv_delta_C(self, num_fiducial, C): """Return inv_delta_C which is needed to calculate T.""" hat_C = np.zeros((num_fiducial, num_fiducial), dtype=float) for i in range(0, num_fiducial): for j in range(i, num_fiducial): r = np.linalg.norm(C[i] - C[j]) hat_C[i, j] = r hat_C[j, i] = r np.fill_diagonal(hat_C, 1) hat_C = (hat_C**2) * np.log(hat_C) # print(C.shape, hat_C.shape) delta_C = np.concatenate( # num_fiducial+3 x num_fiducial+3 [ np.concatenate([np.ones((num_fiducial, 1)), C, hat_C], axis=1), # num_fiducial x num_fiducial+3 np.concatenate([np.zeros( (2, 3)), np.transpose(C)], axis=1), # 2 x num_fiducial+3 np.concatenate([np.zeros( (1, 3)), np.ones((1, num_fiducial))], axis=1) # 1 x num_fiducial+3 ], axis=0) inv_delta_C = np.linalg.inv(delta_C) return inv_delta_C # num_fiducial+3 x num_fiducial+3 def _build_P(self, rectified_img_width, rectified_img_height): rectified_img_grid_x = ( np.arange(-rectified_img_width, rectified_img_width, 2) + 1.0) / rectified_img_width # self.rectified_img_width rectified_img_grid_y = ( np.arange(-rectified_img_height, rectified_img_height, 2) + 1.0) / rectified_img_height # self.rectified_img_height P = np.stack( # self.rectified_img_w x self.rectified_img_h x 2 np.meshgrid(rectified_img_grid_x, rectified_img_grid_y), axis=2) return P.reshape([ -1, 2 ]) # n (= self.rectified_img_width x self.rectified_img_height) x 2 def _build_P_hat(self, num_fiducial, C, P): n = P.shape[ 0] # n (= self.rectified_img_width x self.rectified_img_height) P_tile = np.tile(np.expand_dims(P, axis=1), (1, num_fiducial, 1)) # n x 2 -> n x 1 x 2 -> n x num_fiducial x 2 C_tile = np.expand_dims(C, axis=0) # 1 x num_fiducial x 2 P_diff = P_tile - C_tile # n x num_fiducial x 2 rbf_norm = np.linalg.norm( P_diff, ord=2, axis=2, keepdims=False) # n x num_fiducial rbf = np.multiply(np.square(rbf_norm), np.log(rbf_norm + self.eps)) # n x num_fiducial P_hat = np.concatenate([np.ones((n, 1)), P, rbf], axis=1) return P_hat # n x num_fiducial+3 def build_P_prime(self, batch_C_prime, device='cuda'): """Generate Grid from batch_C_prime [batch_size x num_fiducial x 2]""" batch_size = batch_C_prime.size(0) batch_inv_delta_C = self.inv_delta_C.repeat(batch_size, 1, 1) batch_P_hat = self.P_hat.repeat(batch_size, 1, 1) batch_C_prime_with_zeros = torch.cat( (batch_C_prime, torch.zeros(batch_size, 3, 2).float().to(device)), dim=1) # batch_size x num_fiducial+3 x 2 batch_T = torch.bmm( batch_inv_delta_C, batch_C_prime_with_zeros) # batch_size x num_fiducial+3 x 2 batch_P_prime = torch.bmm(batch_P_hat, batch_T) # batch_size x n x 2 return batch_P_prime # batch_size x n x 2
Read the Docs v: v0.4.1
Versions
latest
stable
v0.4.1
v0.4.0
v0.3.0
v0.2.1
v0.2.0
v0.1.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.