Shortcuts

Note

You are reading the documentation for MMOCR 0.x, which will soon be deprecated by the end of 2022. We recommend you upgrade to MMOCR 1.0 to enjoy fruitful new features and better performance brought by OpenMMLab 2.0. Check out the maintenance plan, changelog, code and documentation of MMOCR 1.0 for more details.

Source code for mmocr.models.textrecog.decoders.position_attention_decoder

# Copyright (c) OpenMMLab. All rights reserved.
import math

import torch
import torch.nn as nn

from mmocr.models.builder import DECODERS
from mmocr.models.textrecog.layers import (DotProductAttentionLayer,
                                           PositionAwareLayer)
from .base_decoder import BaseDecoder


[docs]@DECODERS.register_module() class PositionAttentionDecoder(BaseDecoder): """Position attention decoder for RobustScanner. RobustScanner: `RobustScanner: Dynamically Enhancing Positional Clues for Robust Text Recognition <https://arxiv.org/abs/2007.07542>`_ Args: num_classes (int): Number of output classes :math:`C`. rnn_layers (int): Number of RNN layers. dim_input (int): Dimension :math:`D_i` of input vector ``feat``. dim_model (int): Dimension :math:`D_m` of the model. Should also be the same as encoder output vector ``out_enc``. max_seq_len (int): Maximum output sequence length :math:`T`. mask (bool): Whether to mask input features according to ``img_meta['valid_ratio']``. return_feature (bool): Return feature or logits as the result. encode_value (bool): Whether to use the output of encoder ``out_enc`` as `value` of attention layer. If False, the original feature ``feat`` will be used. init_cfg (dict or list[dict], optional): Initialization configs. Warning: This decoder will not predict the final class which is assumed to be `<PAD>`. Therefore, its output size is always :math:`C - 1`. `<PAD>` is also ignored by loss as specified in :obj:`mmocr.models.textrecog.recognizer.EncodeDecodeRecognizer`. """ def __init__(self, num_classes=None, rnn_layers=2, dim_input=512, dim_model=128, max_seq_len=40, mask=True, return_feature=False, encode_value=False, init_cfg=None): super().__init__(init_cfg=init_cfg) self.num_classes = num_classes self.dim_input = dim_input self.dim_model = dim_model self.max_seq_len = max_seq_len self.return_feature = return_feature self.encode_value = encode_value self.mask = mask self.embedding = nn.Embedding(self.max_seq_len + 1, self.dim_model) self.position_aware_module = PositionAwareLayer( self.dim_model, rnn_layers) self.attention_layer = DotProductAttentionLayer() self.prediction = None if not self.return_feature: pred_num_classes = num_classes - 1 self.prediction = nn.Linear( dim_model if encode_value else dim_input, pred_num_classes) def _get_position_index(self, length, batch_size, device=None): position_index = torch.arange(0, length, device=device) position_index = position_index.repeat([batch_size, 1]) position_index = position_index.long() return position_index
[docs] def forward_train(self, feat, out_enc, targets_dict, img_metas): """ Args: feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`. out_enc (Tensor): Encoder output of shape :math:`(N, D_m, H, W)`. targets_dict (dict): A dict with the key ``padded_targets``, a tensor of shape :math:`(N, T)`. Each element is the index of a character. img_metas (dict): A dict that contains meta information of input images. Preferably with the key ``valid_ratio``. Returns: Tensor: A raw logit tensor of shape :math:`(N, T, C-1)` if ``return_feature=False``. Otherwise it will be the hidden feature before the prediction projection layer, whose shape is :math:`(N, T, D_m)`. """ valid_ratios = [ img_meta.get('valid_ratio', 1.0) for img_meta in img_metas ] if self.mask else None targets = targets_dict['padded_targets'].to(feat.device) # n, c_enc, h, w = out_enc.size() assert c_enc == self.dim_model _, c_feat, _, _ = feat.size() assert c_feat == self.dim_input _, len_q = targets.size() assert len_q <= self.max_seq_len position_index = self._get_position_index(len_q, n, feat.device) position_out_enc = self.position_aware_module(out_enc) query = self.embedding(position_index) query = query.permute(0, 2, 1).contiguous() key = position_out_enc.view(n, c_enc, h * w) if self.encode_value: value = out_enc.view(n, c_enc, h * w) else: value = feat.view(n, c_feat, h * w) mask = None if valid_ratios is not None: mask = query.new_zeros((n, h, w)) for i, valid_ratio in enumerate(valid_ratios): valid_width = min(w, math.ceil(w * valid_ratio)) mask[i, :, valid_width:] = 1 mask = mask.bool() mask = mask.view(n, h * w) attn_out = self.attention_layer(query, key, value, mask) attn_out = attn_out.permute(0, 2, 1).contiguous() # [n, len_q, dim_v] if self.return_feature: return attn_out return self.prediction(attn_out)
[docs] def forward_test(self, feat, out_enc, img_metas): """ Args: feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`. out_enc (Tensor): Encoder output of shape :math:`(N, D_m, H, W)`. img_metas (dict): A dict that contains meta information of input images. Preferably with the key ``valid_ratio``. Returns: Tensor: A raw logit tensor of shape :math:`(N, T, C-1)` if ``return_feature=False``. Otherwise it would be the hidden feature before the prediction projection layer, whose shape is :math:`(N, T, D_m)`. """ valid_ratios = [ img_meta.get('valid_ratio', 1.0) for img_meta in img_metas ] if self.mask else None seq_len = self.max_seq_len n, c_enc, h, w = out_enc.size() assert c_enc == self.dim_model _, c_feat, _, _ = feat.size() assert c_feat == self.dim_input position_index = self._get_position_index(seq_len, n, feat.device) position_out_enc = self.position_aware_module(out_enc) query = self.embedding(position_index) query = query.permute(0, 2, 1).contiguous() key = position_out_enc.view(n, c_enc, h * w) if self.encode_value: value = out_enc.view(n, c_enc, h * w) else: value = feat.view(n, c_feat, h * w) mask = None if valid_ratios is not None: mask = query.new_zeros((n, h, w)) for i, valid_ratio in enumerate(valid_ratios): valid_width = min(w, math.ceil(w * valid_ratio)) mask[i, :, valid_width:] = 1 mask = mask.bool() mask = mask.view(n, h * w) attn_out = self.attention_layer(query, key, value, mask) attn_out = attn_out.permute(0, 2, 1).contiguous() if self.return_feature: return attn_out return self.prediction(attn_out)
Read the Docs v: v0.6.3
Versions
latest
stable
v0.6.3
v0.6.2
v0.6.1
v0.6.0
v0.5.0
v0.4.1
v0.4.0
v0.3.0
v0.2.1
v0.2.0
v0.1.0
dev-1.x
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.