Shortcuts

Note

You are reading the documentation for MMOCR 0.x, which will soon be deprecated by the end of 2022. We recommend you upgrade to MMOCR 1.0 to enjoy fruitful new features and better performance brought by OpenMMLab 2.0. Check out the maintenance plan, changelog, code and documentation of MMOCR 1.0 for more details.

Source code for mmocr.models.textrecog.decoders.sequence_attention_decoder

# Copyright (c) OpenMMLab. All rights reserved.
import math

import torch
import torch.nn as nn
import torch.nn.functional as F

from mmocr.models.builder import DECODERS
from mmocr.models.textrecog.layers import DotProductAttentionLayer
from .base_decoder import BaseDecoder


[docs]@DECODERS.register_module() class SequenceAttentionDecoder(BaseDecoder): """Sequence attention decoder for RobustScanner. RobustScanner: `RobustScanner: Dynamically Enhancing Positional Clues for Robust Text Recognition <https://arxiv.org/abs/2007.07542>`_ Args: num_classes (int): Number of output classes :math:`C`. rnn_layers (int): Number of RNN layers. dim_input (int): Dimension :math:`D_i` of input vector ``feat``. dim_model (int): Dimension :math:`D_m` of the model. Should also be the same as encoder output vector ``out_enc``. max_seq_len (int): Maximum output sequence length :math:`T`. start_idx (int): The index of `<SOS>`. mask (bool): Whether to mask input features according to ``img_meta['valid_ratio']``. padding_idx (int): The index of `<PAD>`. dropout (float): Dropout rate. return_feature (bool): Return feature or logits as the result. encode_value (bool): Whether to use the output of encoder ``out_enc`` as `value` of attention layer. If False, the original feature ``feat`` will be used. init_cfg (dict or list[dict], optional): Initialization configs. Warning: This decoder will not predict the final class which is assumed to be `<PAD>`. Therefore, its output size is always :math:`C - 1`. `<PAD>` is also ignored by loss as specified in :obj:`mmocr.models.textrecog.recognizer.EncodeDecodeRecognizer`. """ def __init__(self, num_classes=None, rnn_layers=2, dim_input=512, dim_model=128, max_seq_len=40, start_idx=0, mask=True, padding_idx=None, dropout=0, return_feature=False, encode_value=False, init_cfg=None): super().__init__(init_cfg=init_cfg) self.num_classes = num_classes self.dim_input = dim_input self.dim_model = dim_model self.return_feature = return_feature self.encode_value = encode_value self.max_seq_len = max_seq_len self.start_idx = start_idx self.mask = mask self.embedding = nn.Embedding( self.num_classes, self.dim_model, padding_idx=padding_idx) self.sequence_layer = nn.LSTM( input_size=dim_model, hidden_size=dim_model, num_layers=rnn_layers, batch_first=True, dropout=dropout) self.attention_layer = DotProductAttentionLayer() self.prediction = None if not self.return_feature: pred_num_classes = num_classes - 1 self.prediction = nn.Linear( dim_model if encode_value else dim_input, pred_num_classes)
[docs] def forward_train(self, feat, out_enc, targets_dict, img_metas): """ Args: feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`. out_enc (Tensor): Encoder output of shape :math:`(N, D_m, H, W)`. targets_dict (dict): A dict with the key ``padded_targets``, a tensor of shape :math:`(N, T)`. Each element is the index of a character. img_metas (dict): A dict that contains meta information of input images. Preferably with the key ``valid_ratio``. Returns: Tensor: A raw logit tensor of shape :math:`(N, T, C-1)` if ``return_feature=False``. Otherwise it would be the hidden feature before the prediction projection layer, whose shape is :math:`(N, T, D_m)`. """ valid_ratios = [ img_meta.get('valid_ratio', 1.0) for img_meta in img_metas ] if self.mask else None targets = targets_dict['padded_targets'].to(feat.device) tgt_embedding = self.embedding(targets) n, c_enc, h, w = out_enc.size() assert c_enc == self.dim_model _, c_feat, _, _ = feat.size() assert c_feat == self.dim_input _, len_q, c_q = tgt_embedding.size() assert c_q == self.dim_model assert len_q <= self.max_seq_len query, _ = self.sequence_layer(tgt_embedding) query = query.permute(0, 2, 1).contiguous() key = out_enc.view(n, c_enc, h * w) if self.encode_value: value = key else: value = feat.view(n, c_feat, h * w) mask = None if valid_ratios is not None: mask = query.new_zeros((n, h, w)) for i, valid_ratio in enumerate(valid_ratios): valid_width = min(w, math.ceil(w * valid_ratio)) mask[i, :, valid_width:] = 1 mask = mask.bool() mask = mask.view(n, h * w) attn_out = self.attention_layer(query, key, value, mask) attn_out = attn_out.permute(0, 2, 1).contiguous() if self.return_feature: return attn_out out = self.prediction(attn_out) return out
[docs] def forward_test(self, feat, out_enc, img_metas): """ Args: feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`. out_enc (Tensor): Encoder output of shape :math:`(N, D_m, H, W)`. img_metas (dict): A dict that contains meta information of input images. Preferably with the key ``valid_ratio``. Returns: Tensor: The output logit sequence tensor of shape :math:`(N, T, C-1)`. """ seq_len = self.max_seq_len batch_size = feat.size(0) decode_sequence = (feat.new_ones( (batch_size, seq_len)) * self.start_idx).long() outputs = [] for i in range(seq_len): step_out = self.forward_test_step(feat, out_enc, decode_sequence, i, img_metas) outputs.append(step_out) _, max_idx = torch.max(step_out, dim=1, keepdim=False) if i < seq_len - 1: decode_sequence[:, i + 1] = max_idx outputs = torch.stack(outputs, 1) return outputs
[docs] def forward_test_step(self, feat, out_enc, decode_sequence, current_step, img_metas): """ Args: feat (Tensor): Tensor of shape :math:`(N, D_i, H, W)`. out_enc (Tensor): Encoder output of shape :math:`(N, D_m, H, W)`. decode_sequence (Tensor): Shape :math:`(N, T)`. The tensor that stores history decoding result. current_step (int): Current decoding step. img_metas (dict): A dict that contains meta information of input images. Preferably with the key ``valid_ratio``. Returns: Tensor: Shape :math:`(N, C-1)`. The logit tensor of predicted tokens at current time step. """ valid_ratios = [ img_meta.get('valid_ratio', 1.0) for img_meta in img_metas ] if self.mask else None embed = self.embedding(decode_sequence) n, c_enc, h, w = out_enc.size() assert c_enc == self.dim_model _, c_feat, _, _ = feat.size() assert c_feat == self.dim_input _, _, c_q = embed.size() assert c_q == self.dim_model query, _ = self.sequence_layer(embed) query = query.permute(0, 2, 1).contiguous() key = out_enc.view(n, c_enc, h * w) if self.encode_value: value = key else: value = feat.view(n, c_feat, h * w) mask = None if valid_ratios is not None: mask = query.new_zeros((n, h, w)) for i, valid_ratio in enumerate(valid_ratios): valid_width = min(w, math.ceil(w * valid_ratio)) mask[i, :, valid_width:] = 1 mask = mask.bool() mask = mask.view(n, h * w) # [n, c, l] attn_out = self.attention_layer(query, key, value, mask) out = attn_out[:, :, current_step] if self.return_feature: return out out = self.prediction(out) out = F.softmax(out, dim=-1) return out
Read the Docs v: v0.6.3
Versions
latest
stable
v0.6.3
v0.6.2
v0.6.1
v0.6.0
v0.5.0
v0.4.1
v0.4.0
v0.3.0
v0.2.1
v0.2.0
v0.1.0
dev-1.x
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.