总览¶
权重¶
以下是可用于推理的权重列表。
为了便于使用,有的权重可能会存在多个较短的别名,这在表格中将用“/”分隔。
例如,表格中展示的 DB_r18 / dbnet_resnet18_fpnc_1200e_icdar2015
表示您可以使用
DB_r18
或 dbnet_resnet18_fpnc_1200e_icdar2015
来初始化推理器:
>>> from mmocr.apis import TextDetInferencer
>>> inferencer = TextDetInferencer(model='DB_r18')
>>> # 等价于
>>> inferencer = TextDetInferencer(model='dbnet_resnet18_fpnc_1200e_icdar2015')
文字检测¶
模型 |
README |
ICDAR2015 (hmean-iou) |
CTW1500 (hmean-iou) |
Totaltext (hmean-iou) |
---|---|---|---|---|
|
0.8169 |
- |
- |
|
|
0.8504 |
- |
- |
|
|
0.8543 |
- |
- |
|
|
0.8644 |
- |
- |
|
|
- |
- |
0.8182 |
|
|
0.8622 |
- |
- |
|
|
0.8684 |
- |
- |
|
|
0.8882 |
- |
- |
|
|
- |
0.7458 |
- |
|
|
- |
0.7562 |
- |
|
|
0.8182 |
- |
- |
|
|
0.8513 |
- |
- |
|
|
- |
0.8467 |
- |
|
|
- |
0.8488 |
- |
|
|
- |
0.8192 |
- |
|
|
0.8528 |
- |
- |
|
|
0.8604 |
- |
- |
|
|
- |
- |
0.8134 |
|
|
- |
0.777 |
- |
|
|
0.7848 |
- |
- |
|
|
- |
0.7793 |
- |
|
|
- |
0.8037 |
- |
|
|
0.7998 |
- |
- |
|
|
0.8478 |
- |
- |
|
|
- |
0.8286 |
- |
|
|
- |
0.8529 |
- |
文字识别¶
注解
Avg 指该模型在 IIIT5K、SVT、ICDAR2013、ICDAR2015、SVTP、CT80 上的平均结果。
模型 |
README |
Avg (word_acc) |
IIIT5K (word_acc) |
SVT (word_acc) |
ICDAR2013 (word_acc) |
ICDAR2015 (word_acc) |
SVTP (word_acc) |
CT80 (word_acc) |
---|---|---|---|---|---|---|---|---|
|
0.88 |
0.95 |
0.91 |
0.94 |
0.79 |
0.84 |
0.84 |
|
|
0.91 |
0.96 |
0.94 |
0.95 |
0.81 |
0.89 |
0.88 |
|
|
0.86 |
0.94 |
0.89 |
0.93 |
0.77 |
0.81 |
0.85 |
|
|
0.70 |
0.81 |
0.81 |
0.87 |
0.56 |
0.61 |
0.57 |
|
|
0.96 |
0.98 |
0.98 |
0.98 |
0.90 |
0.94 |
0.99 |
|
|
0.88 |
0.95 |
0.90 |
0.95 |
0.76 |
0.85 |
0.89 |
|
|
0.83 |
0.92 |
0.88 |
0.94 |
0.72 |
0.78 |
0.75 |
|
|
0.87 |
0.95 |
0.88 |
0.95 |
0.76 |
0.80 |
0.89 |
|
|
0.87 |
0.95 |
0.90 |
0.94 |
0.74 |
0.80 |
0.89 |
|
|
0.86 |
0.86 |
0.90 |
0.94 |
0.75 |
0.85 |
0.89 |
|
|
0.87 |
0.86 |
0.92 |
0.94 |
0.74 |
0.84 |
0.90 |
|
|
0.87 |
0.95 |
0.89 |
0.93 |
0.76 |
0.81 |
0.87 |
|
|
0.88 |
0.95 |
0.88 |
0.94 |
0.76 |
0.83 |
0.90 |
|
|
0.87 |
0.96 |
0.87 |
0.94 |
0.77 |
0.81 |
0.89 |
|
|
0.90 |
0.96 |
0.92 |
0.96 |
0.80 |
0.88 |
0.90 |
|
|
0.88 |
0.94 |
0.90 |
0.96 |
0.79 |
0.86 |
0.85 |
统计数据¶
模型权重文件数量: 55
配置文件数量: 49
论文数量: 20
ALGORITHM: 20
文本检测模型¶
模型权重文件数量: 29
配置文件数量: 29
论文数量: 8
[ALGORITHM] Deep Relational Reasoning Graph Network for Arbitrary Shape Text Detection
[ALGORITHM] Efficient and Accurate Arbitrary-Shaped Text Detection With Pixel Aggregation Network
[ALGORITHM] Fourier Contour Embedding for Arbitrary-Shaped Text Detection
[ALGORITHM] Mask R-CNN
[ALGORITHM] Real-Time Scene Text Detection With Differentiable Binarization and Adaptive Scale Fusion
[ALGORITHM] Real-Time Scene Text Detection With Differentiable Binarization
[ALGORITHM] Shape Robust Text Detection With Progressive Scale Expansion Network
[ALGORITHM] Textsnake: A Flexible Representation for Detecting Text of Arbitrary Shapes
文本识别模型¶
模型权重文件数量: 23
配置文件数量: 17
论文数量: 10
[ALGORITHM] Aster: An Attentional Scene Text Recognizer With Flexible Rectification
[ALGORITHM] Master: Multi-Aspect Non-Local Network for Scene Text Recognition
[ALGORITHM] Nrtr: A No-Recurrence Sequence-to-Sequence Model for Scene Text Recognition
[ALGORITHM] On Recognizing Texts of Arbitrary Shapes With 2d Self-Attention
[ALGORITHM] Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text Recognition
[ALGORITHM] Revisiting Scene Text Recognition: A Data Perspective
[ALGORITHM] Robustscanner: Dynamically Enhancing Positional Clues for Robust Text Recognition
[ALGORITHM] Show, Attend and Read: A Simple and Strong Baseline for Irregular Text Recognition
[ALGORITHM] Svtr: Scene Text Recognition With a Single Visual Model