Shortcuts

Source code for mmocr.models.textdet.postprocessors.textsnake_postprocessor

# Copyright (c) OpenMMLab. All rights reserved.

from typing import List, Sequence

import cv2
import numpy as np
import torch
from mmengine.structures import InstanceData
from numpy.linalg import norm
from skimage.morphology import skeletonize

from mmocr.registry import MODELS
from mmocr.structures import TextDetDataSample
from mmocr.utils import fill_hole
from .base import BaseTextDetPostProcessor


[docs]@MODELS.register_module() class TextSnakePostprocessor(BaseTextDetPostProcessor): """Decoding predictions of TextSnake to instances. This was partially adapted from https://github.com/princewang1994/TextSnake.pytorch. Args: text_repr_type (str): The boundary encoding type 'poly' or 'quad'. min_text_region_confidence (float): The confidence threshold of text region in TextSnake. min_center_region_confidence (float): The confidence threshold of text center region in TextSnake. min_center_area (int): The minimal text center region area. disk_overlap_thr (float): The radius overlap threshold for merging disks. radius_shrink_ratio (float): The shrink ratio of ordered disks radii. rescale_fields (list[str], optional): The bbox/polygon field names to be rescaled. If None, no rescaling will be performed. """ def __init__(self, text_repr_type: str = 'poly', min_text_region_confidence: float = 0.6, min_center_region_confidence: float = 0.2, min_center_area: int = 30, disk_overlap_thr: float = 0.03, radius_shrink_ratio: float = 1.03, rescale_fields: Sequence[str] = ['polygons'], **kwargs) -> None: super().__init__( text_repr_type=text_repr_type, rescale_fields=rescale_fields, **kwargs) assert text_repr_type == 'poly' self.min_text_region_confidence = min_text_region_confidence self.min_center_region_confidence = min_center_region_confidence self.min_center_area = min_center_area self.disk_overlap_thr = disk_overlap_thr self.radius_shrink_ratio = radius_shrink_ratio
[docs] def get_text_instances(self, pred_results: torch.Tensor, data_sample: TextDetDataSample ) -> TextDetDataSample: """ Args: pred_results (torch.Tensor): Prediction map with shape :math:`(C, H, W)`. data_sample (TextDetDataSample): Datasample of an image. Returns: list[list[float]]: The instance boundary and its confidence. """ assert pred_results.dim() == 3 data_sample.pred_instances = InstanceData() data_sample.pred_instances.polygons = [] data_sample.pred_instances.scores = [] pred_results[:2, :, :] = torch.sigmoid(pred_results[:2, :, :]) pred_results = pred_results.detach().cpu().numpy() pred_text_score = pred_results[0] pred_text_mask = pred_text_score > self.min_text_region_confidence pred_center_score = pred_results[1] * pred_text_score pred_center_mask = \ pred_center_score > self.min_center_region_confidence pred_sin = pred_results[2] pred_cos = pred_results[3] pred_radius = pred_results[4] mask_sz = pred_text_mask.shape scale = np.sqrt(1.0 / (pred_sin**2 + pred_cos**2 + 1e-8)) pred_sin = pred_sin * scale pred_cos = pred_cos * scale pred_center_mask = fill_hole(pred_center_mask).astype(np.uint8) center_contours, _ = cv2.findContours(pred_center_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) for contour in center_contours: if cv2.contourArea(contour) < self.min_center_area: continue instance_center_mask = np.zeros(mask_sz, dtype=np.uint8) cv2.drawContours(instance_center_mask, [contour], -1, 1, -1) skeleton = skeletonize(instance_center_mask) skeleton_yx = np.argwhere(skeleton > 0) y, x = skeleton_yx[:, 0], skeleton_yx[:, 1] cos = pred_cos[y, x].reshape((-1, 1)) sin = pred_sin[y, x].reshape((-1, 1)) radius = pred_radius[y, x].reshape((-1, 1)) center_line_yx = self._centralize(skeleton_yx, cos, -sin, radius, instance_center_mask) y, x = center_line_yx[:, 0], center_line_yx[:, 1] radius = (pred_radius[y, x] * self.radius_shrink_ratio).reshape( (-1, 1)) score = pred_center_score[y, x].reshape((-1, 1)) instance_disks = np.hstack( [np.fliplr(center_line_yx), radius, score]) instance_disks = self._merge_disks(instance_disks, self.disk_overlap_thr) instance_mask = np.zeros(mask_sz, dtype=np.uint8) for x, y, radius, score in instance_disks: if radius > 1: cv2.circle(instance_mask, (int(x), int(y)), int(radius), 1, -1) contours, _ = cv2.findContours(instance_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) score = np.sum(instance_mask * pred_text_score) / ( np.sum(instance_mask) + 1e-8) if (len(contours) > 0 and cv2.contourArea(contours[0]) > 0 and contours[0].size > 8): polygon = contours[0].flatten().tolist() data_sample.pred_instances.polygons.append(polygon) data_sample.pred_instances.scores.append(score) data_sample.pred_instances.scores = torch.FloatTensor( data_sample.pred_instances.scores) return data_sample
[docs] def split_results(self, pred_results: torch.Tensor) -> List[torch.Tensor]: """Split the prediction results into text score and kernel score. Args: pred_results (torch.Tensor): The prediction results. Returns: List[torch.Tensor]: The text score and kernel score. """ pred_results = [pred_result for pred_result in pred_results] return pred_results
@staticmethod def _centralize(points_yx: np.ndarray, normal_cos: torch.Tensor, normal_sin: torch.Tensor, radius: torch.Tensor, contour_mask: np.ndarray, step_ratio: float = 0.03) -> np.ndarray: """Centralize the points. Args: points_yx (np.array): The points in yx order. normal_cos (torch.Tensor): The normal cosine of the points. normal_sin (torch.Tensor): The normal sine of the points. radius (torch.Tensor): The radius of the points. contour_mask (np.array): The contour mask of the points. step_ratio (float): The step ratio of the centralization. Defaults to 0.03. Returns: np.ndarray: The centralized points. """ h, w = contour_mask.shape top_yx = bot_yx = points_yx step_flags = np.ones((len(points_yx), 1), dtype=np.bool_) step = step_ratio * radius * np.hstack([normal_cos, normal_sin]) while np.any(step_flags): next_yx = np.array(top_yx + step, dtype=np.int32) next_y, next_x = next_yx[:, 0], next_yx[:, 1] step_flags = (next_y >= 0) & (next_y < h) & (next_x > 0) & ( next_x < w) & contour_mask[np.clip(next_y, 0, h - 1), np.clip(next_x, 0, w - 1)] top_yx = top_yx + step_flags.reshape((-1, 1)) * step step_flags = np.ones((len(points_yx), 1), dtype=np.bool_) while np.any(step_flags): next_yx = np.array(bot_yx - step, dtype=np.int32) next_y, next_x = next_yx[:, 0], next_yx[:, 1] step_flags = (next_y >= 0) & (next_y < h) & (next_x > 0) & ( next_x < w) & contour_mask[np.clip(next_y, 0, h - 1), np.clip(next_x, 0, w - 1)] bot_yx = bot_yx - step_flags.reshape((-1, 1)) * step centers = np.array((top_yx + bot_yx) * 0.5, dtype=np.int32) return centers @staticmethod def _merge_disks(disks: np.ndarray, disk_overlap_thr: float) -> np.ndarray: """Merging overlapped disks. Args: disks (np.ndarray): The predicted disks. disk_overlap_thr (float): The radius overlap threshold for merging disks. Returns: np.ndarray: The merged disks. """ xy = disks[:, 0:2] radius = disks[:, 2] scores = disks[:, 3] order = scores.argsort()[::-1] merged_disks = [] while order.size > 0: if order.size == 1: merged_disks.append(disks[order]) break i = order[0] d = norm(xy[i] - xy[order[1:]], axis=1) ri = radius[i] r = radius[order[1:]] d_thr = (ri + r) * disk_overlap_thr merge_inds = np.where(d <= d_thr)[0] + 1 if merge_inds.size > 0: merge_order = np.hstack([i, order[merge_inds]]) merged_disks.append(np.mean(disks[merge_order], axis=0)) else: merged_disks.append(disks[i]) inds = np.where(d > d_thr)[0] + 1 order = order[inds] merged_disks = np.vstack(merged_disks) return merged_disks
Read the Docs v: dev-1.x
Versions
latest
stable
v1.0.1
v1.0.0
0.x
v0.6.3
v0.6.2
v0.6.1
v0.6.0
v0.5.0
v0.4.1
v0.4.0
v0.3.0
v0.2.1
v0.2.0
v0.1.0
dev-1.x
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.