FPNC¶
- class mmocr.models.textdet.FPNC(in_channels, lateral_channels=256, out_channels=64, bias_on_lateral=False, bn_re_on_lateral=False, bias_on_smooth=False, bn_re_on_smooth=False, asf_cfg=None, conv_after_concat=False, init_cfg=[{'type': 'Kaiming', 'layer': 'Conv'}, {'type': 'Constant', 'layer': 'BatchNorm', 'val': 1.0, 'bias': 0.0001}])[源代码]¶
FPN-like fusion module in Real-time Scene Text Detection with Differentiable Binarization.
This was partially adapted from https://github.com/MhLiao/DB and https://github.com/WenmuZhou/DBNet.pytorch.
- 参数
in_channels (list[int]) – A list of numbers of input channels.
lateral_channels (int) – Number of channels for lateral layers.
out_channels (int) – Number of output channels.
bias_on_lateral (bool) – Whether to use bias on lateral convolutional layers.
bn_re_on_lateral (bool) – Whether to use BatchNorm and ReLU on lateral convolutional layers.
bias_on_smooth (bool) – Whether to use bias on smoothing layer.
bn_re_on_smooth (bool) – Whether to use BatchNorm and ReLU on smoothing layer.
asf_cfg (dict, optional) – Adaptive Scale Fusion module configs. The attention_type can be ‘ScaleChannelSpatial’.
conv_after_concat (bool) – Whether to add a convolution layer after the concatenation of predictions.
init_cfg (dict or list[dict], optional) – Initialization configs.
- 返回类型